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ABSTRACT The increasing number of chemicals has aroused public concern due to their negative influence
on the environment and human health. To protect the environment and human health, the toxicity of these
compounds must be assessed. Traditional in vitro and in vivo toxicity testing are time-consuming, expensive,
and complex, and they may pose ethical considerations as well. Due to these restrictions, alternative methods
for assessing the toxicity of a chemical are required. Numerous toxicity prediction models have been
developed recently using a variety of machine learning and deep learning algorithms such as support vector
machines, random forests, k-nearest neighbors, ensemble learning, and deep neural networks by integrating
classical ML techniques or Deep Learning (DL) with molecular representations such as fingerprints or 2D
graphs. This paper presents an overview of chemical toxicity and the drug Discovery Process. It summarizes
current ML and DL models for predictive toxicology with a brief objective and the limitations and challenges

Al faces in toxicity prediction.

INDEX TERMS Chemical Toxicity, Drug Discovery Process, Molecular Representations, Machine

Learning, Deep Learning.

I. INTRODUCTION
Chemical toxicity is any harmful effect that can happen

when you are exposed to chemicals. It can be measured in
different ways, such as long-term toxicity or effects specific to
a particular organ, like genotoxicity and carcinogenicity. This
can then be translated into quantitative or qualitative
parameters like LD50, or low, moderate, or high toxicity.
Toxicity studies are designed to precisely discover these
adverse effects on humans, animals, plants, or the
environment, whether through acute exposure (in a single
dose) or cumulative exposures (in repeated doses over time).
Many factors influence the toxicity of chemicals: the route of
exposure (oral, dermal, or inhaled), the dose, frequency, and
duration of exposure, specific properties related to Absorption,
Distribution, Metabolism,
(ADME), interactions between exogenous or endogenous
substances, subject characteristics (age, sex, or body mass),
and specific physicochemical properties (lipophilicity,
solubility,  boiling  point, among  others) [1,2].
To ensure public safety by minimizing exposure to hazardous
chemicals, regulatory decision-making bodies such as the
European Medicines Agency (EMA), U.S. Food and Drug
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Administration (FDA), Environmental Protection Agency
(EPA), and European Environment Agency (EPA) have
employed toxicity assessments [3]. Animal tests are the
foundation of current conventional toxicity evaluation
procedures. These tests are limited, nevertheless, by financial,
time, and ethical considerations. Furthermore, testing such
many substances through animal experiments is not feasible
for regulatory, toxicological, or medicinal development
objectives.

To overcome these obstacles, it is critical to create quick and
affordable substitutes for performing animal toxicity testing,
such as in vitro and silico techniques. Numerous computer
techniques, including read-across, structural warnings, and the
Quantitative Structure-Activity Relationship (QSAR), have
been applied in recent decades to forecast the toxicological
consequences of compounds [4]. QSAR establishes a
quantitative connection between a chemical's
physicochemical or structural properties and its harmful
effects. It's been a popular technique for creating toxicity
prediction models.
Recently, QSAR based on ML and DL has become
increasingly common in predictive toxicology [5]. This is
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because of the ongoing advancements in processing power,
the rise of big data, and the quick development of ML and DL
methodologies. ML and DL are highly appealing
computational algorithms for predicting toxicity for a wide
range of substances because of their capacity to learn from
data and create predictions automatically. While ML and
DL-based models have made significant progress in
predicting toxicology, there is a rising interest in generating
more accurate models. A comprehensive assessment of ML
and DL models in predictive toxicology can increase their
reliability and provide insight for future improvement.
This review summarizes papers on the in-silico concept and
the prediction of chemical toxicity. The search used the
drug's key terms in silico, prediction, and chemical toxicity.
Among the items searched, the literature was aimed to use
the most recent studies (from 2021 to 2024). The remainder
of this paper is arranged as follows: section 2 exposes a brief
overview of drug discovery process. Section 3 shows a
molecular representation. Section 4 displays the models for
ML and DL. Section 5 discusses challenges of Al in toxicity
prediction. Section 6 presents the paper's conclusion.

Il. The Drug Discovery Process: A Brief Overview
Drug research and development is a multidimensional,

complex endeavor. The approach involves four key phases:
identifying & validating targets & compound screening and
lead optimization & preclinical investigations, and clinical
trials. Figure 1 presents the process of drug discovery and
development [6]. The initial phase in this approach is
identifying pathophysiological variables and biological
targets. Bioinformatics, genomics, and proteomic research
are required to determine cellular and genetic targets. The
first molecule, or hit with activity against the given target, is
initially discovered. This can be accomplished by creating
chemical libraries or isolating natural compounds from
plants, bacteria, and fungi. The next phase is to identify the
lead chemical with the most promising potential for
medication development. Lead optimization
changing a selected lead specificity and
effectiveness at lower doses. Therapeutic candidates undergo
an iterative process that includes cellular tests and structure-
activity connections to improve their functional qualities.
Animal models are utilized for in-vivo studies, including
pharmacokinetic and toxicity assessments.
Following preclinical research, the medication candidate is
tested on patients in clinical trials [7,8]. Clinical trials are
crucial for assessing drug efficacy and patient safety. The
method is time-consuming and inefficient. Pharmaceutical
businesses therefore look for ways to cut costs and expedite
their projects. Artificial Intelligence (AI) refers to a

involves
to boost

machine's capacity to mimic human cognitive processes,
such as learning and problem-solving. Al systems that are
based on technology can mimic human intellect via the use
of a variety of advanced tools and networks. Al-based
technologies are increasingly being deployed at various drug
discovery phases to save time and increase profitability.
These encompass a range of activities such as computational
organic synthesis, compound production, quantum
mechanics (QM)-based compound attribute calculation, real-
time cell sorting, cell classification, and more [9].

IIl. Molecular representations

An essential aspect of Al-based medication discovery and
analysis is the conversion of molecules into a computer-
readable format while preserving their inherent
physicochemical characteristics, given the rapid expansion
of natural products [10]. A range of descriptors have been
suggested to describe medications; these descriptors can be
categorized into four groups based on their dimensionality.
Several open-source toolkits, like OpenBabel [11] and
ChemmineR [12], have been proposed to speed up drug
development by calculating molecular descriptors and
structures.

The simplest molecular representation is the zero-
dimensional (0D) descriptor, derived from medication
chemical formulas [13]. The 0D descriptor often comprises
molecular weight, atom number, atom type count, and other
basic characteristics, such as the quantity of heavy atoms.
The 0D descriptor is simple and only extracts shallow
information.

Drugs are encoded using the one-dimensional (1D)
descriptor based on their substructures, including the number
of rings, functional groups, substituent atoms, and fragments
centered on atoms. Typically, the 1D descriptor's elements
are binary—for example, 1/0 denotes the presence or
absence of a substituent atom—or the frequency at which
certain substructures occur. A simplified molecular-input
line-entry system (SMILES) is another kind of 1D descriptor
besides the property-based 1D descriptor [14]. SMILES
represents medications using a string of characters. A
medication may have multiple SMILES representations
based on its atom order.

The two-dimensional (2D) descriptor takes into account
adjacency, connectedness, and other topological properties
of the atoms to provide more information than the one-
dimensional (1D) descriptor. Consequently, medication is
usually represented as a graph with nodes denoting atoms
and edges denoting bonds to extract 2D descriptors. Graph
invariants, connectivity bonds, graph-based substructures,
and topological descriptors are examples of property-based
2D descriptors. The molecular fingerprint (FP), which
encodes molecules in binary form, was proposed to extract
more information [15]. FP, denoted by 1/0, indicates whether
a given substructure is present or absent in a string of a given
length. The fingerprints from the molecular access system
[16], the daylight-like fingerprint [11], and the extended-
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connectivity fingerprint are the most widely utilized 2D FPs
[17].

The three-dimensional (3D) descriptor represents a
molecule in 3D space [18], with each atom identified by its
X, y, and z coordinates. The 3D descriptor provides detailed
information about spatial and geometric configurations. 3D
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FIGURE 1. The process of drug discovery and development.

descriptors provide information on surface area, volume, and
steric properties. Geometrical fingerprint [19] and
pharmacophore fingerprint [20] are examples of non-
property-based 3D descriptors. They are commonly
employed in drug development and virtual screening due to
their ability to reflect complicated physicochemical features

accurately.
Figure 2 depicts schematic diagrams of compound
representations employing 0D-3D  descriptors  [21].

Recently, graph-based approaches for encoding molecules
have been developed, in addition to existing schemes.
Examples of graph-based systems include convolutional
networks for spectral and spatial graphs. A recent review
provides more information concerning graph-based
molecular representation approaches. The molecular graph
representation is based on mapping atoms and bonds into sets
of nodes and edges.
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FIGURE 2. Compound representations employing 0D-3D descriptors.

2

It makes intuitive sense to regard the bonds in a molecule as
edges and the atoms as nodes, but there is no reason why one
might not think of alternate mappings. Generally, nodes are
represented by circles or spheres, and edges by lines in graph
representations. Rather, the nodes in molecular graphs are
typically depicted by points where the bonds connect (for
carbon atoms) or letters that indicate the type of atom (as in
the periodic table).

A molecular graph representation is a 2D object that may
represent 3D data, such as bond angles, chirality, and atomic
coordinates. It is necessary to express any geographic links
between the nodes as node and/or edge attributes because
nodes in a graph, which is a mathematical object, only have
pairwise relationships rather than formal spatial positions
[10]. Numerous software programs, such as ChemDraw [22],
Mercury [23], Avogadro [24], VESTA [25], and VMD [26],
may readily visualize 2D and 3D graph representations.

IV. ML and DL models

Animal models can be used in experiments to test a
chemical's toxicity, but these investigations are expensive
and time-consuming. As a result, ML and DL have emerged
as desirable methods for assessing chemical toxicity.

Figure 3 illustrates the basic processes of the ML and DL
modeling that consist of (a) defining questions, (b) collecting
data, (c) preprocessing data, (d) splitting data, (e) training
models, (f) optimizing models, (g) evaluating models, (h)
interpreting models, (i) deploying models [27].

Regression and classification models are the two different
categories of machine learning models. Classification
models are based on categorical toxicity values, whereas
regression models are based on quantitative toxicity values
like LD50 and LC50. Classification models are more often
used in the field of predictive toxicology. Toxicology
prediction models have been created using various ML and
DL methods, including SVM, RF, KNN, and neural
networks (NN) [28]. The ML and DL algorithms employed
in the published toxicity prediction models are included in
Table 1.

Support Vector Machines (SVM): The SVM computes the
best linear decision boundary for class separation based on a
sample that defines class borders. The SVM technique
separates data by generating a hypersurface through linear
classification. The SVM model successfully identified the
optimal hypersurface for distinguishing two classes by a
significant margin. SVM is a prominent machine learning
technique that can be used for classification and regression.
SVM is commonly used in classification problems,
recognizing hyperplanes to enhance the margin between
classes [29].

Decision Tree (DT): the decision tree structure is similar to
a tree's. Trees consist of roots, nodes, branches, and leaves.
The decision tree shares structure with decision nodes, leaf
nodes, and branches. The dataset is divided into decreasing
entropy levels by the leaf and terminal nodes, which display
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the class label of a tree for final prediction. The tree began
with a route node and ended by splitting nodes [30].

KNN- is one of the simplest machine learning algorithms. It
predicts a chemical's activity by selecting the k chemicals
with the shortest distances from it in a chemical space
represented by a collection of descriptors. Based on majority
voting, compounds are often assigned to the class with the
highest number of k-nearest chemicals in classification. The
KNN technique is simple to grasp and produces highly
interpretable prediction models [28].

A subclass of machine learning methods known as "deep
learning algorithms" uses multi-layered neural networks—
thus the name "deep"—to simulate intricate patterns in huge
datasets. Because these algorithms can automatically extract
features and build hierarchical representations of data, they
have attracted much interest. This makes them especially
useful for tasks like natural language processing, picture and
audio recognition, and more. Figure 4 presents a neural
network with possible inputs. The order of the input, from up
to down, concord with the bias introduced by the user [31].
Important architectures for deep learning are: CNNs, or
convolutional neural networks:

CNNs are deep learning types that function similarly to
feed-forward neural networks. CNN uses rotational and
transitional approaches for data analysis. The input data for
the convolutional operation is applied to this neural layer. It
additionally filters the input data. This network
automatically trained itself based on features and patterns
[32]. This algorithm specifically handles and examines
visual data, such as pictures and videos.

RNNs (Recurrent Neural Networks): Because RNNs are
built for sequential data, they are perfect for time series
prediction and language modeling applications. Preserve a
memory of past inputs through hidden states, enabling them
to record temporal dependencies [32].

Generative Adversarial Networks (GANs): These networks
are composed of a discriminator and a generator that are
trained concurrently. The discriminator assesses the data
samples that the generator produces, creating highly realistic
[33].

Dataset preparation Mod Model development

> (a) defining question > > (d) splitting data .\~> (g) evaluating models

* RMSE, MSE, MAE, R?
+ Accuracy, recall,
F1-score, AUC-ROC

| |

>/.‘ (e) training models > (h) interpreting models

* Train and test dataset
* Random division

« Model types
* Required Data

> (b) collecting data

« Regression and
classification
« Algorithm selection

| | |

> (c) preprocessing data >; () optimizing models > > (i) deploying models

* Public dataset
* Literature data

* Feature importance
* Structural alerts

2

« Data clean

« Data normalization 3 ﬁyperpaﬁar_ne;ler L)

* Applicability domain

FIGURE 3. Basic processes of the ML and DL modeling.
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FIGURE 4. A neural network with possible molecular inputs.

V. Challenges of Al in Toxicity Prediction

Even with artificial intelligence’s potential, there are still a
lot of obstacles standing in the way of its ultimate realization.
These difficulties can be methodically divided into five main
areas: data, interpretability, model creation, generalizability,
and tool-related obstacles.

A. Data-related barriers

Developing the best prediction models is hampered by the
limited availability and inconsistent quality of toxicity data. It
is possible to explain this difference by looking at the different
experimental strategies used to address different toxicity data
points, including liver toxicity, toxicity resulting from
pharmacokinetic features, idiosyncratic reactions, and
cardiogenic toxicity.
Toxicological datasets such as Tox21 and ToxCast frequently
suffer from data imbalances. The overrepresentation of benign
chemicals in these databases is a characteristic. The
unbalanced outcome has led to a bias in the models identifying
compounds as harmless, so ignoring potentially hazardous
chemicals and causing a serious risk to human health. Also,
this might influence regulatory choices leading to extended
public exposure to harmful substances and long-term health
effects.

Predictions may also be based on an over-reliance on
molecular descriptors, such as structural traits and
physicochemical characteristics, to represent toxicity data.
Structural features determine toxicophore qualities, while
physicochemical aspects explain ADME (Absorption,
Distribution, Metabolism, and Excretion) characteristics.
They might, however, be unable to adequately convey the
biological dynamics and interactions of in vivo settings [66].
Prediction errors may arise especially when toxicity results
from interactions with the Dbiological system or
biotransformation produces toxic metabolites. High feature
counts can also result in issues including data sparsity,
overfitting, and higher processing demands.
The "curse of dimensionality" refers to this phenomenon, in
which excessive data dimensionality has a negative effect on
model performance.
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B. Models-related barriers

Traditional methods, such as decision trees and support vector
machines, are different from sophisticated deep learning (DL)
models in terms of data handling and representations
regarding toxicity prediction.
Conventional models cannot capture complex toxicological
patterns and interactions since they rely on manually chosen
weighted features. On the other hand, DL models analyze data
hierarchically, enabling them to recognize minute
toxicological patterns. Additionally, task-specific
characteristics that indicate toxicophoric and are essential for
toxicity predictions can be produced using DL. Traditional
models are simple to use, but not accurate enough for complex
toxicological scenarios. While more accurate, DL models
have drawbacks because of their great computational
complexity.

New developments in toxicity prediction include learning
strategies based on graphs. The DeepTox pipeline [67] is a
prime example of these techniques, effectively improving
toxicity data representations and exhibiting considerable gains
in predictive efficiency. Attaining model robustness is still
difficult, though. Scenarios with "toxicity cliffs" make this
clear. A study on substituted phenols illustrates these
situations well since small molecular changes such as fluoro-
or bromo-substitution resulted in significantly varied toxicity
[68, 69]. Certain models may not be able to identify these
subtle structural alterations, leading to notable differences in
their toxicity predictions.

C. Generalizability-related barriers

Because in vivo biological systems are complicated and have
a wide range of toxicity endpoints, generalizability in machine
learning models for toxicity prediction is difficult. By
highlighting the various interactions that occur within
biological systems, these endpoints evaluate the toxicity
profiles of the substances. Models are usually designed for
particular endpoints, and each one needs a different set of data
parameters. Thus, a model that works well for one kind of
toxicity may not work well for another [70].

D. Interpretability-related barriers:

While ML models' accuracy is important, their prediction
transparency is just as important. Functioning frequently as
"black boxes," particularly in DL models with intricate
structures. The intricate topologies of these models, with
numerous layers of interconnected nodes that independently
choose features for predictions, make it difficult to understand
the logic underlying their conclusions. Even the model
developers cannot fully understand these models' internal
workings. Decisions made in predictive toxicology, where
choices have broad effects on drug development and public
health, require a grasp of the ratio of underlying toxicity
projections.

Without unambiguous interpretability, scientists may find it
difficult to respond to important queries such as "How toxic is
this compound?" or "Does the found toxicity justify excluding
the compound, or does it still meet the criteria for potential
hit?" For toxicologists and chemists, this knowledge is
essential, especially when the substance under investigation
has great promise for future drug discovery. It may be possible
to modify the substance to reduce toxicity while maintaining
its therapeutic qualities by having a thorough knowledge of the
rationale for the modality [70].
Furthermore, in regulatory contexts, choosing too cautiously
and maybe missing out on useful substances can arise from an
inability to understand toxicity model predictions.

E. Tool-related barriers:

When predicting toxicity, the decision between commercial
and open-access techniques is crucial. Although open-access
technologies are widely available, their usability,
dependability, and predictability are typically compromised
by their lack of advanced predictive capabilities and user-
friendly services. On the other hand, commercial tools are
more expensive and may not be entirely transparent, but they
are also more effective and user focused. The effectiveness
and safety of drug development are greatly impacted by this
decision [71].
To maximize the drug discovery process and lower the chance
of late-stage drug withdrawals, the main problem is striking a
balance between the accuracy of commercial tools and the
accessibility of open-access technologies [72].

VI. CONCLUSION

Estimating the toxicity of drug candidates is crucial in drug
discovery, as it can lead to high costs, failures in later phases,
and withdrawals. Based on the existing data, ML and DL
models could be viable methods for serving as early filters of
dangerous chemicals during the drug discovery process, even
with their ongoing limitations discussed in this review.
This review highlights a brief Overview of chemical toxicity
and drug processes. We focus on the recent progress and
outstanding challenges in the area, describing the state-of-the-
art models implemented for chemical toxicity prediction. The
type of molecular representation, ML and DL algorithms are
also explained.
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Ref#

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

TABLEI

SUMMARIZES CURRENT ML AND DL MODELS FOR PREDICTIVE TOXICOLOGY

Objectives
Predict toxicity of chemicals using
molecular similarity and machine-
learning models.
Provide a freely available computational
platform for toxicity prediction.

Develop a new approach method for
chemical-mixture toxicity assessment.
Integrate Al with pathophysiology to

predict toxicity mechanisms
comprehensively.

Identify ~ chemical  substructures
responsible  for hidden neuron
activation.

Explain model predictions using
associated substructures for

individual compounds.

Develop 3MTox model for toxicity
identification.

Achieve state-of-the-art performance
on toxicity benchmark datasets.

Develop deep learning models for
predicting  compound toxicity.
Integrate models for virtual screening
of low-toxicity drug candidates.

Review deep learning for predictive
toxicology assessment.
Highlight early detection of adverse
drug reactions.

Develop hybrid quantum-classical
neural network for drug toxicity
prediction. Transfer learnable weights
from quantum to classical devices

Develop hybrid model to predict
chemical hepatotoxicity.
Improve risk assessments for
environmental and health concerns

Develop models for predicting ocular
toxicity of chemicals.
Enhance model interpretability using
SHAP and attention weights analysis.
Predict acute dermal toxicity using
machine learning.
Identify important features and
structural fragments associated with
toxicity.

Assess in silico chemical toxicity
prediction for occupational cancer
prevention.

Develop predictive models for
different toxicities in recent years.

Develop a problem formulation
framework for in silico toxicology.
Identify gaps and inconsistencies in in
silico toxicology problem
formulations.

Methods Used
Molecular similarity and
machine-learning models.
In silico methods for toxicity
prediction.

AI-HNN and CPTM for toxicity
prediction.

Integration of AI-HNN and CPTM
into AI-CPTM framework.

SHAP and integrated gradients
for feature attribution.
Novel  technique  identifies
chemical substructures activating
hidden neurons.

3MTox model with BERT
backbone and motif graph input.
Classical ML and DL methods
for toxicity prediction

Graph convolutional network
(GCN) regression model for
acute toxicity prediction.
Multiple GCN binary
classification models for different
toxicity types

Deep  learning  techniques.
Traditional methods like animal
testing.

neural
toxicity

Quantum-classical
network for drug
prediction.

Hadamard test for efficient inner
product estimation in quantum
computing

Hybrid model combining in vitro
assay and chemical structures.
Machine learning for quantitative

structure-activity relationship
(QSAR) modeling

Machine learning and deep
learning algorithms.

SHAP method and attention
weights analysis

Machine learning and deep
learning algorithms.
SARpy, Shapley additive
explanation, attentive FP
heatmap

Machine learning techniques for
quantitative  regression  and
qualitative classification studies.
Development of  predictive
models for different toxicities in
recent years.

Developed a problem
formulation framework.
Modified and applied a PF
framework from risk assessment
literature

Limitations
No limitations mentioned.

Absence of comprehensive methods for
toxicity —assessment of mixtures.
Standalone AI models have limitations
in identifying toxic chemicals.

Understanding predictions made by
complex neural network models is
difficult.

Current techniques do not explain
how compounds are transformed in
layers.

Over-reliance on artificial features.
Easy overfitting with classical ML
and DL methods

Addressed data size, label type, and
distribution variations.
No specific limitations mentioned in
the abstract section

Limited data availability and quality
for training deep learning models.
Imbalanced toxicity datasets can lead
to biased model performance.

Noisy intermediate-scale quantum
devices face decoherence and gate
ITOTS.
Quantum-classical
aims to address
complexity challenges.

Predictivity of hepatotoxicity model
initially at 0.59.
Improved to 0.8 with inclusion of 37
structural alerts

neural network
computational

Reliance on data quality and quantity
for model performance.
Importance of balancing data quality
and model interpretability.

No direct identification of acute
dermal toxicity through animal
experiments.

Difficulty in assessing acute dermal
toxicity of potential compounds.
Obstacles and shortcomings in drug
safety assessment.
Enhancements needed for future drug
safety assessment.

PFs for in silico toxicology lack
consistency in components.
PFs need to address higher-level
conceptual questions.
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Ref#

[46]

(28]

[47]

(48]

[49]

[50]

i1

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Objectives
Develop small molecule toxicity
prediction model.
Improve efficiency of research and
development in drug design.

Summarize machine learning and
deep learning toxicity prediction
models.

Highlight importance of dataset
quality for model performance.
Investigate EGNNs for toxicity
prediction using 3D molecular
structures.

Enhance ML models for toxicity
prediction with 3D  geometry
information.

Predict toxicity accurately using
multi-task deep learning model.
Provide  contrastive  molecular
explanations for toxicity predictions.
Develop predictive models for drug
toxicity.

Integrate informatics and biology to
build foundation for predictions.
Analyze EPA CompTox Chemical
Dashboard data and tools.
Evaluate utility for next generation

risk  assessment and  toxicity
prediction

Predict broad toxicities using induced
pluripotent stem cells.

Achieve high accuracy in toxicity
predictions for various categories

Link mass spectra of chemicals to
toxicity endpoints.
Utilize machine learning and
experimentation for analysis.
Improve compound toxicity
prediction using GCN and SSL.
Investigate if GCN is superior to other
ML methods.

Develop models to predict respiratory
toxicity of chemicals.
Identify significant molecular
descriptors for accurate predictions

Develop ML models for toxicology
predictions.

Implement consensus approach to
improve predictive performance

Compare traditional and deep
learning approaches for toxicity
prediction.

Evaluate performance of different
models on toxicity datasets.

Predict pharmacokinetics and toxicity
for diverse targets.
Support molecular optimization and
interpretation for input molecules.

Develop machine learning model for
toxic dispersion casualty prediction.

Methods Used
Graph attention network model
proposed.
Attention mechanism used to
mine connection relationships
between atoms

Machine learning algorithms:
SVM, random forest, k-NN,
ensemble.

Deep learning algorithms: Neural
network

Equivariant Neural
Networks (EGNN ).
Equivariant transformer (ET)
model in TorchMD-NET

Graph

Multi-task deep learning model
for toxicity prediction.
Contrastive explanation method
for model predictions

Integration of informatics and
biology.

Development of DTox for
predicting drug toxicity

NAMs: in chemico, in silico, in
vitro approaches.
Data curation, predictive tools,
case studies discussed

ES cell gene networks combined
with  developmental toxicity
testing.

Transfer learning from ES cell
data to predict toxicities
Machine
Experimentation.

learning.

Semi-supervised learning (SSL)
algorithms.

Graph  Convolution  Neural
Network (GCN) with Mean
Teacher (MT) SSL

Eight machine learning models
utilized for prediction.
Methods include SVM, MLP,
XGB, RF, LR, ABDT, KNN, NB

VenomPred platform employs in-
house Machine Learning models.
Consensus approach combining
results of different ML models
used.

Traditional physico-chemical
descriptor and machine learning-
based approaches.
Descriptor-free, SMILES-based,
deep learning BERT
architectures

Graph neural networks and
graph-based signatures.
Deep learning-based
pharmacokinetic and toxicity
prediction platform

Machine
quantitative

learning based
property-

Limitations
Traditional ML methods can't use
molecules  directly as inputs.
Difficulty in accurately extracting
molecular features.

Traditional toxicity assays are
complicated, costly, and time-
consuming.

Different datasets may impact model
performance in toxicity prediction.

Physicochemical  property  total
energy not related to toxicity
prediction.

No direct relationship between 3D
molecule representations and toxicity.

Highly skewed ClinTox test set with
few 'toxic' molecules.
Minimal  recovery of  known
toxicophores for clinical endpoints.
Lack of comprehensive data on drug
toxicity.

Challenges in integrating diverse data
sources

Limited availability of experimental
data for some substances.
Challenges in integrating diverse data
sources for predictive modeling.

Animal testing limited applicability to
humans.

Desire for effective alternatives due to
animal protection concerns.

Limited number of chemicals studied.
Machine learning model performance
variability

Limited availability of annotated
toxicity data.
Time-consuming and costly
traditional toxicity testing methods

Lack of data availability statement.
No conflict of interest declaration
provided

In vitro and in vivo methods limited
by resources.
Ethics, time, budget constraints in
toxicity prediction methods.

No limitations mentioned in the
paper.

Current methods limited in diversity,

accuracy, interpretability, and
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Ref# Objectives Methods Used Limitations year
Estimate affected area caused by toxic consequence relationship model.
chemical release accurately. Toxic dispersion casualty
database construction for
prediction model development
Develop predictive toxicity models ICE models for toxicity -
for nonionic alcohol ethoxylate prediction.
[59] surfactants. Comparison of acute and chronic 2021
Estimate chronic HCSs using acute- HCSs
to-chronic ratio and regressions
Predict chemical respiratory toxicity Machine learning. Limited by the availability of high-
[60] using _ machine learqir}g. In silico prediction. quality data. 2021
Develop in silico models for toxicity Performance may vary based on
assessment. different chemical classes.
Develop predictive computational Computational modeling. Animal testing guidelines are costly,
model for developmental toxicants. Data extraction from PubChem time-consuming, and require many
[61] Create alternative chemical and the ToxCast program animals. 2022
developmental toxicity evaluations. Computational modeling aims to
provide a cost-effective alternative.
Predict reproductive toxicity of Ensemble learning methods. Limited by the quality of available
chemicals using ensemble learning Molecular  fingerprints  for data sources.
methods. predicting reproductive toxicity Challenges in interpreting complex
[62] Utilize molecular fingerprints for of chemicals interactions between chemicals and | 202!
predictive modeling of reproductive toxicity.
toxicity.
Propose FS method for class- Boosting-based feature selection Class-imbalance damages feature
imbalance datasets in  toxicity ensemble. selection performance for QSAR
[63] prediction. Fast clustering-based FS and fast models. 2021
Boosting with fast clustering-based correlation-based filter Standard methods less efficient
FS and fast correlation-based filter. compared to proposed FS method.
Develop hybrid deep learning model Hybrid neural network (HNN) Resource-intensive to assess
for toxicity prediction. deep learning model. chemicals in-vivo.
[64] Prioritize chemicals for experimental Ensemble methods: Random Limited evaluation of chemicals in | 2021
testing accurately Forest, Bagging, Adaboost commercial use.
Predict toxicity risk after Machine  learning  models. Imbalance of chemical balance may
chemotherapy sessions for individual Predicting toxicity levels in lead to severe complications.
65] patier}ts. ‘ chemotherapy patients. Side effects depend on various factors 2022
Classify ~ chemotherapy  induced like drug type and dose.
complications based on predefined
toxicity levels.
and machine learning approaches,” Biotechnology and Bioprocess
Engineering, vol. 25, pp. 895-930, 2020.
REFERENCES [71 R. Dhudum, A. Ganeshpurkar, and A. Pawar, “Revolutionizing drug
[1] E.P’erez Santm, R. Rodr’iguez Solana, M. Gonz'alez Garc1a, M. D. discovery: A comprehensive review of ai applications,” Drugs and
M. Garc'ia Su’arez, G. D. Blanco D'1az, M. D. Cima Cabal, J. M. Drug Candidates, vol. 3, no. 1, pp. 148—171, 2024
Moreno Rojas, and J. I. L’opez S’anchez, “Toxicity prediction based [8] H.S.Chan, H. Shan, T. Dahoun, H. Vogel, and S. Yuan, “Advancing
on artificial intelligence: A multidisciplinary overview,” Wiley drug discovery via artificial intelligence,” Trends in pharmacological
Interdisciplinary Reviews: Computational Molecular Science, vol. 11, sciences, vol. 40, no. 8, pp. 592-604, 2019.
no. 5, p.e1516, 2021. [9] M. J. Lamberti, M. Wilkinson, B. A. Donzanti, G. E. Wohlhieter, S.
[2] A. B. Raies and V. B. Bajic, “In silico toxicology: computational Parikh, R. G. Wilkins, and K. Getz, “A study on the application and
methods for the prediction of chemical toxicity,” Wiley use of artificial intelligence to support drug development,” Clinical
Interdisciplinary Reviews: Computational Molecular Science, vol. 6, therapeutics, vol. 41, no. 8, pp. 1414-1426, 2019.
no. 2, pp.147-172, 2016. [10] L. David, A. Thakkar, R. Mercado, and O. Engkvist, “Molecular
[3] H. Hong, S. Thakkar, M. Chen, and W. Tong, “Development of representations in ai-driven drug discovery: a review and practical
decision forest models for prediction of drug-induced liver injury in guide,” Journal of Cheminformatics, vol. 12, no. 1, p. 56, 2020.
humans using a large set of fda-approved drugs,” Scientific reports, [11] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T.
vol. 7,no. 1, p. 17311, 2017. Vandermeersch, and G. R. Hutchison, “Open babel: An open chemical
[4] Y. Huang, X. Li, S. Xu, H. Zheng, L. Zhang, J. Chen, H. Hong, R. toolbox,” Journal of cheminformatics, vol. 3, pp. 1-14, 2011.
Kusko, and R. Li, “Quantitative structure—activity relationship models [12] Y. Cao, A. Charisi, L.-C. Cheng, T. Jiang, and T. Girke, “Chemminer:
for predicting inflammatory potential of metal oxide nanoparticles,” a compound mining framework for r,” Bioinformatics, vol. 24, no. 15,
Environmental health perspectives, vol. 128, no. 6, p. 067010, 2020. pp. 1733-1734, 2008.
[5] H. Hong, J. Zhu, M. Chen, P. Gong, C. Zhang, and W. Tong, [13] F. Grisoni, D. Ballabio, R. Todeschini, and V. Consonni, “Molecular
“Quantitative structure—activity relationship models for predicting risk descriptors for structure—activity applications: a hands-on approach,”
of drug-induced liver injury in humans,” Drug-induced liver toxicity, Computational toxicology: methods and protocols, pp. 353, 2018.
pp. 77-100, 2018. [14] D. Weininger, “Smiles, a chemical language and information system.
[6] H. Kim, E. Kim, I. Lee, B. Bae, M. Park, and H. Nam, “Artificial 1. introduction to methodology and encoding rules,” Journal of

intelligence in drug discovery: a comprehensive review of data-driven

chemical information and computer sciences, vol. 28, no. 1, pp. 31—
36, 1988.

VOLUME 1, NUMBER 1, 2025



RMAICT

E. Shehab et al.: Chemical Toxicity Prediction Based on Artificial Intelligence: A Review

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

B31]

[32]

[33]

[34]

[35]

A. Capecchi, D. Probst, and J.-L. Reymond, “One molecular
fingerprint to rule them all: drugs, biomolecules, and the
metabolome,” Journal of cheminformatics, vol. 12, pp. 1-15, 2020.
M. Seo, H. K. Shin, Y. Myung, S. Hwang, and K. T. No,
“Development of natural compound molecular fingerprint (NC-MFP)
with the dictionary of natural products (DNP) for natural product-
based drug development,” Journal of Cheminformatics, vol. 12, no. 1,
p. 6,2020.

D. Rogers and M. Hahn, “Extended-connectivity fingerprints,”
Journal of chemical information and modeling, vol. 50, no. 5, pp. 742—
754, 2010.

H. Matter and T. P"otter, “Comparing 3d pharmacophore triplets and
2d fingerprints for selecting diverse compound subsets,” Journal of
chemical information and computer sciences, vol. 39, no. 6, pp. 1211—
1225, 1999.

S. Yin, E. A. Proctor, A. A. Lugovskoy, and N. V. Dokholyan, “Fast
screening of protein surfaces using geometric invariant fingerprints,”
Proceedings of the National Academy of Sciences, vol. 106, no. 39,
pp. 16 622—16 626, 2009.

D.J. Wood, J. d. Vlieg, M. Wagener, and T. Ritschel, “Pharmacophore
fingerprint-based approach to binding site subpocket similarity and its
application to bioisostere replacement,” Journal of chemical
information and modeling, vol. 52, no. 8, pp. 2031-2043, 2012.

W. Chen, X. Liu, S. Zhang, and S. Chen, “Artificial intelligence for
drug discovery: Resources, methods, and applications,” Molecular
Therapy-Nucleic Acids, vol. 31, pp. 691-702, 2023.

ChemDraw. PerkinElmer Informatics.

C. F. Macrae, 1. Sovago, S. J. Cottrell, P. T. Galek, P. McCabe, E.
Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler et al.,
“Mercury 4.0: From visualization to analysis, design and prediction,”
Applied Crystallography, vol. 53, no. 1, pp. 226-235, 2020.

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E.
Zurek, and G. R. Hutchison, “Avogadro: an advanced semantic
chemical editor, visualization, and analysis platform,” Journal of
cheminformatics, vol. 4, pp. 1-17, 2012.

K. Momma and F. Izumi, “Vesta 3 for three-dimensional visualization
of crystal, volumetric and morphology data,” Journal of applied
crystallography, vol. 44, no. 6, pp. 1272-1276, 2011.

W. Humphrey, A. Dalke, and K. Schulten, “Vmd: visual molecular
dynamics,” Journal of molecular graphics, vol. 14, no. 1, pp. 33-38,
1996.

S. Cui, Y. Gao, Y. Huang, L. Shen, Q. Zhao, Y. Pan, and S. Zhuang,
“Advances and applications of machine learning and deep learning in
environmental ecology and health,” Environmental Pollution, p.
122358, 2023.

W. Guo, J. Liu, F. Dong, M. Song, Z. Li, M. K. H. Khan, T. A.
Patterson, and H. Hong, “Review of machine learning and deep
learning models for toxicity prediction,” Experimental Biology and
Medicine, vol. 248, no. 21, pp. 1952-1973, 2023.

S. M. A. Mahnaz Ahmadi and F. Ghorbani-Bidkorpeh, “Toxicity
prediction of nanoparticles using machine learning approaches,”
Toxicology, vol. 501, 2024.

M. Maniruzzaman, M. J. Rahman, B. Ahammed, and M. M. Abedin,
“Classification and prediction of diabetes disease using machine
learning paradigm,” Health information science and systems, vol. 8,
pp. 1-14, 2020.

J. Hemmerich and G. F. Ecker, “In silico toxicology: From structure—
activity relationships towards deep learning and adverse outcome
pathways,” Wiley Interdisciplinary Reviews: Computational
Molecular Science, vol. 10, no. 4, p. €1475, 2020.

JessiJ and White, “New methods for predicting drug molecule activity
using deep learning,” Bioscience Methods, vol. 15, no. 1, pp. 28-36,
2024.

F. Mostafa and M. Chen, “Computational models for predicting liver
toxicity in the deep learning era,” Frontiers in Toxicology, vol. 5,
p.1340860, 2024.

P. Banerjee, E. Kemmler, M. Dunkel, and R. Preissner, “Protox 3.0: a
webserver for the prediction of toxicity of chemicals,” Nucleic Acids
Research, p. gkae303, 2024.

S. Limbu, E. Glasgow, T. Block, and S. Dakshanamurthy, “A machine
learning-driven pathophysiology-based new approach method for the

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

dose-dependent assessment of hazardous chemical mixtures and
experimental validations,” Toxics, vol. 12, no. 7, p. 481, 20241.

M. Walter, S. J. Webb, and V. J. Gillet, “Interpreting neural network
models for toxicity prediction by extracting learned chemical
features,” Journal of Chemical Information and Modeling, vol. 64, no.
9, pp. 3670-3688, 2024.

Y. Zhu, Y. Zhang, X. Li, and L. Wang, “3mtox: A motif-level graph
based multi-view chemical language model for toxicity identification
with deep interpretation,” Journal of Hazardous Materials, vol. 476, p.
135114, 2024.

K. M. Saravanan, J.-F. Wan, L. Dai, J. Zhang, J. Z. Zhang, and H.
Zhang, “A deep learning based multi-model approach for predicting
drug-like chemical compound’s toxicity,” Methods, vol. 226, pp. 164—
175,2024.

B. 1. Priyadarshini, “Deep learning for predictive toxicology
assessment early detection of adverse drug reactions.” Power System
Technology, vol. 48, no. 1, pp. 680-697, 2024.

A. M. Smaldone and V. S. Batista, “Quantum-to-classical neural
network transfer learning applied to drug toxicity prediction,” Journal
of Chemical Theory and Computation, 2024.

E. Chung, X. Wen, X. Jia, H. L. Ciallella, L. M. Aleksunes, and H.
Zhu, “Hybrid non-animal modeling: A mechanistic approach to
predict chemical hepatotoxicity,” Journal of Hazardous Materials,
vol.471, p. 134297, 2024.

Y. Zhou, Z. Wang, Z. Huang, W. Li, Y. Chen, X. Yu, Y. Tang, and G.
Liu, “In silico prediction of ocular toxicity of compounds using
explainable machine learning and deep learning approaches,” Journal
of Applied Toxicology, 2024.

S.Lou, Z. Yu, Z. Huang, H. Wang, F. Pan, W. Li, G. Liu, and Y. Tang,
“In silico prediction of chemical acute dermal toxicity using
explainable machine learning methods,” Chemical Research in
Toxicology, vol. 37, no. 3, pp. 513-524, 2024.

P. M. S and D. V. N, “In-silico models in molecular property and
toxicity assessments,” Novel Aspects on Chemistry and Biochemistry,
vol. 9, 2024.

J. Achar, M. T. Cronin, J. W. Firman, and G. "Oberg, “A problem
formulation framework for the application of in silico toxicology
methods in chemical risk assessment,” Archives of Toxicology, vol.
98, no. 6, pp. 17271740, 2024.

Y. Tong, Q. Guo, J. Cui, and X. Peng, “Toxicity prediction study of
small molecules based on graph attention networks,” in 2023 2nd
International Conference on Artificial Intelligence, Human-Computer
Interaction and Robotics (AIHCIR), pp. 603—607, 2023.

J. Cremer, L. Medrano Sandonas, A. Tkatchenko, D.-A. Clevert, and
G. De Fabritiis, “Equivariant graph neural networks for toxicity
prediction,” Chemical Research in Toxicology, vol. 36, no. 10,
pp.1561-1573, 2023.

B. Sharma, V. Chenthamarakshan, A. Dhurandhar, S. Pereira, J. A.
Hendler, J. S. Dordick, and P. Das, “Accurate clinical toxicity
prediction using multi-task deep neural nets and contrastive molecular
explanations,” Scientific Reports, vol. 13, no. 1, p. 4908, 2023.

M. J. Sniatynski and B. S. Kristal, “Predicting drug toxicity at the
intersection of informatics and biology: Dtox builds a foundation,”
Patterns, vol. 3, no. 9, 2022.

D. Kim and J. Choi, “Utility of EPA comptox chemical dashboard for
next generation risk assessment and toxicity prediction of chemicals,”
J. Korean Soc. Environ. Eng, vol. 45, no. 5, pp. 244-255, 2023.

J. Yamane, T. Wada, H. Otsuki, K. Inomata, M. Suzuki, T. Hisaki, S.
Sekine, H. Kouzuki, K. Kobayashi, H. Sone et al., “Prediction of broad
chemical toxicities using induced pluripotent stem cells and gene
networks by transfer learning from embryonic stem cell data,”
bioRxiv, pp. 2021-11, 2021.

S. Hu, G. Liu, J. Zhang, J. Yan, H. Zhou, and X. Yan, “Linking
electron ionization mass spectra of organic chemicals to toxicity
endpoints through machine learning and experimentation,” Journal of
Hazardous Materials, vol. 431, p. 128558, 2022.

J. Chen, Y.-W. Si, C.-W. Un, and S. W. Siu, “Chemical toxicity
prediction based on semi-supervised learning and graph convolutional
neural network,” Journal of cheminformatics, vol. 13, pp. 1-16, 2021.
K. Jaganathan, H. Tayara, and K. T. Chong, “An explainable
supervised machine learning model for predicting respiratory toxicity

VOLUME 1, NUMBER 1, 2025



RMAICT

E. Shehab et al.: Chemical Toxicity Prediction Based on Artificial Intelligence: A Review

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

of chemicals using optimal molecular descriptors,” Pharmaceutics,
vol. 14, no. 4, p. 832, 2022.

S. Galati, M. Di Stefano, E. Martinelli, M. Macchia, A. Martinelli, G.
Poli, and T. Tuccinardi, “Venompred: A machine learning based
platform for molecular toxicity predictions,” International Journal of
Molecular Sciences, vol. 23, no. 4, p. 2105, 2022.

U. Norinder, “Traditional machine and deep learning for predicting
toxicity endpoints,” Molecules, vol. 28, no. 1, p. 217, 2022.

Y. Myung, A. G. de S"a, and D. B. Ascher, “Deep-pk: deep learning
for small molecule pharmacokinetic and toxicity prediction,” Nucleic
Acids Research, p. gkae254, 2024.

Z. Jiao, Z. Zhang, S. Jung, and Q. Wang, “Machine learning based
quantitative consequence prediction models for toxic dispersion
casualty,” Journal of Loss Prevention in the Process Industries, vol.
81, p. 104952, 2023.

A. C. Bejarano and J. R. Wheeler, “Predictive toxicity models for
chemically related substances: a case study with nonionic alcohol
ethoxylate surfactant,” Environmental Toxicology and Chemistry, vol.
40, no. 7, pp. 2071-2080, 2021.

Z. Wang, P. Zhao, X. Zhang, X. Xu, W. Li, G. Liu, and Y. Tang, “In
silico prediction of chemical respiratory toxicity via machine
learning,” Computational Toxicology, vol. 18, p. 100155, 2021.

[61] H. L. Ciallella, D. P. Russo, S. Sharma, Y. Li, E. Sloter, L. Sweet,
H. Huang, and H. Zhu, “Predicting prenatal developmental toxicity
based on the combination of chemical structures and biological data,”
Environmental science & technology, vol. 56, no. 9, pp. 5984-5998,
2022.

H.Feng, L. Zhang, S. Li, L. Liu, T. Yang, P. Yang, J. Zhao, I. T. Arkin,
and H. Liu, “Predicting the reproductive toxicity of chemicals using
ensemble learning methods and molecular fingerprints,” Toxicology
Letters, vol. 340, pp. 4-14, 2021.

A. Antelo-Collado, R. Carrasco-Velar, N. Garc'1a-Pedrajas, and G.
Cerruela-Garc'ia, “Effective feature selection method for class-
imbalance datasets applied to chemical toxicity prediction,” Journal of
Chemical Information and Modeling, vol. 61, no. 1, pp. 76-94, 2020.

S. Limbu, C. Zakka, and S. Dakshanamurthy, “Predicting
environmental chemical toxicity using a new hybrid deep machine
learning method,” 2021.

1. Boudali and I. B. Messaoud, “Machine learning models for toxicity
prediction in chemotherapy,” in International Conference on
Intelligent Systems Design and Applications, 2022, pp. 350-364.

A. Lysenko, A. Sharma, K. A. Boroevich, and T. Tsunoda, “An
integrative machine learning approach for prediction of toxicity
related drug safety,” Life science alliance, vol. 1, no. 6, 2018.

A. Mayr, G. Klambauer, T. Unterthiner, and S. Hochreiter, “DeepTox:
Toxicity Prediction using Deep Learning,” Frontiers in Environmental
Science, vol. 3, p. 80, 2016.

Y. Y. Pang, W. K. Yeo, K. Y. Loh, M. L. Go, and H. K. Ho,
“Structure—toxicity relationship and structure—activity relationship
study of 2-phenylaminophenylacetic acid derived compounds,” Food
and chemical toxicology, vol. 71, pp. 207-216, 2014.

M. Wen, Z. Zhang, S. Niu, H. Sha, R. Yang, Y. Yun, and H. Lu,
“Deep-learning-based drug—target interaction prediction,” Journal of
proteome research, vol. 16, no. 4, pp. 1401-1409, 2017.

A. Abou Hajal and A. Z. Al Meslamani, “Overcoming barriers to
machine learning applications in toxicity prediction,” Expert Opinion
on Drug Metabolism & Toxicology, vol. 20, no. 7, pp. 549553, 2024.
T. T. V. Tran, A. Surya Wibowo, H. Tayara, and K. T. Chong,
“Artificial intelligence in drug toxicity prediction: recent advances,
challenges, and future perspectives,” Journal of chemical information
and modeling, vol. 63, no. 9, pp. 2628-2643, 2023.

S. Yang and S. Kar, “Application of artificial intelligence and machine
learning in early detection of adverse drug reactions (ADRs) and drug-
induced toxicity,” Artificial Intelligence Chemistry, p. 100011, 2023.

Eman Shehab is currently a Lecturer
Assistant in the Department of Computer
Science, Faculty of Computers and
Artificial Intelligence, University of Sadat
City, Egypt, since 2020. She achieved her
master’s degree from Menoufia University.
She has worked on several research topics;
her research interests are neural network
and machine learning. She can be contacted
at email: eman.shehab@fcai.usc.edu.eg.

Hamada Nayel is an Assistant Professor
at the Department of Computer Science,
Faculty of Computers and Artificial
Intelligence, Benha University, Benha,
Egypt. In 2019, he received his Ph.D. from
Mangalore University, India. His research
interests include Arabic NLP, biomedical
NLP, and social media analysis. He can be
contacted at email:
hamada.ali@fci.bu.edu.eg

Mohamed Taha is an Associate
Professor at Benha University, Faculty of
Computers and Artificial intelligence,
Computer Science Department, Egypt.
He received his M.Sc. degree and his
Ph.D. degree in computer science at Ain
Shams University, Egypt, in February
2009 and July 2015. He is the founder
and coordinator of” Networking and
Mobile Technologies” program, Faculty
of Computers and Artificial Intelligence,
Benha University. His research interest’s
concern: Computer Vision (Object
Tracking-Video Surveillance Systems),
Digital Forensics (Image Forgery
Detection —  Document  Forgery
Detection - Fake Currency Detection),
Image Processing (OCR), Computer
Network (Routing Protocols - Security),
Augmented Reality, Cloud Computing,
and Data Mining (Association Rules
Mining-Knowledge Discovery). Taha
has contributed more than 30+ technical
papers in international journals and
conferences. He can be contacted at
email: mohamed.taha@fci.bu.edu.eg.

VOLUME 1, NUMBER 1, 2025



