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ABSTRACT The increasing number of chemicals has aroused public concern due to their negative influence 
on the environment and human health. To protect the environment and human health, the toxicity of these 
compounds must be assessed. Traditional in vitro and in vivo toxicity testing are time-consuming, expensive, 
and complex, and they may pose ethical considerations as well. Due to these restrictions, alternative methods 
for assessing the toxicity of a chemical are required. Numerous toxicity prediction models have been 
developed recently using a variety of machine learning and deep learning algorithms such as support vector 
machines, random forests, k-nearest neighbors, ensemble learning, and deep neural networks by integrating 
classical ML techniques or Deep Learning (DL) with molecular representations such as fingerprints or 2D 
graphs. This paper presents an overview of chemical toxicity and the drug Discovery Process. It summarizes 
current ML and DL models for predictive toxicology with a brief objective and the limitations and challenges 
AI faces in toxicity prediction. 

INDEX TERMS Chemical Toxicity, Drug Discovery Process, Molecular Representations, Machine 
Learning, Deep Learning.

I. INTRODUCTION 
      Chemical toxicity is any harmful effect that can happen 
when you are exposed to chemicals. It can be measured in 
different ways, such as long-term toxicity or effects specific to 
a particular organ, like genotoxicity and carcinogenicity. This 
can then be translated into quantitative or qualitative 
parameters like LD50, or low, moderate, or high toxicity. 
Toxicity studies are designed to precisely discover these 
adverse effects on humans, animals, plants, or the 
environment, whether through acute exposure (in a single 
dose) or cumulative exposures (in repeated doses over time). 
Many factors influence the toxicity of chemicals: the route of 
exposure (oral, dermal, or inhaled), the dose, frequency, and 
duration of exposure, specific properties related to Absorption, 
Distribution, Metabolism, and Excretion/Elimination 
(ADME), interactions between exogenous or endogenous 
substances, subject characteristics (age, sex, or body mass), 
and specific physicochemical properties (lipophilicity, 
solubility, boiling point, among others) [1,2].  
 To ensure public safety by minimizing exposure to hazardous 
chemicals, regulatory decision-making bodies such as the 
European Medicines Agency (EMA), U.S. Food and Drug 

Administration (FDA), Environmental Protection Agency 
(EPA), and European Environment Agency (EPA) have 
employed toxicity assessments [3]. Animal tests are the 
foundation of current conventional toxicity evaluation 
procedures. These tests are limited, nevertheless, by financial, 
time, and ethical considerations. Furthermore, testing such 
many substances through animal experiments is not feasible 
for regulatory, toxicological, or medicinal development 
objectives.  
 To overcome these obstacles, it is critical to create quick and 
affordable substitutes for performing animal toxicity testing, 
such as in vitro and silico techniques. Numerous computer 
techniques, including read-across, structural warnings, and the 
Quantitative Structure-Activity Relationship (QSAR), have 
been applied in recent decades to forecast the toxicological 
consequences of compounds [4]. QSAR establishes a 
quantitative connection between a chemical's 
physicochemical or structural properties and its harmful 
effects. It's been a popular technique for creating toxicity 
prediction models. 
Recently, QSAR based on ML and DL has become 
increasingly common in predictive toxicology [5]. This is 



                                                                                              E. Shehab et al.: Chemical Toxicity Prediction Based on Artificial Intelligence: A Review 

2 VOLUME 1, NUMBER 1, 2025 

because of the ongoing advancements in processing power, 
the rise of big data, and the quick development of ML and DL 
methodologies. ML and DL are highly appealing 
computational algorithms for predicting toxicity for a wide 
range of substances because of their capacity to learn from 
data and create predictions automatically. While ML and 
DL-based models have made significant progress in 
predicting toxicology, there is a rising interest in generating 
more accurate models. A comprehensive assessment of ML 
and DL models in predictive toxicology can increase their 
reliability and provide insight for future improvement. 
 This review summarizes papers on the in-silico concept and 
the prediction of chemical toxicity. The search used the 
drug's key terms in silico, prediction, and chemical toxicity. 
Among the items searched, the literature was aimed to use 
the most recent studies (from 2021 to 2024). The remainder 
of this paper is arranged as follows: section 2 exposes a brief 
overview of drug discovery process. Section 3 shows a 
molecular representation. Section 4 displays the models for 
ML and DL. Section 5 discusses challenges of AI in toxicity 
prediction. Section 6 presents the paper's conclusion. 

II. The Drug Discovery Process: A Brief Overview 
Drug research and development is a multidimensional, 
complex endeavor. The approach involves four key phases: 
identifying & validating targets & compound screening and 
lead optimization & preclinical investigations, and clinical 
trials. Figure 1 presents the process of drug discovery and 
development [6]. The initial phase in this approach is 
identifying pathophysiological variables and biological 
targets. Bioinformatics, genomics, and proteomic research 
are required to determine cellular and genetic targets. The 
first molecule, or hit with activity against the given target, is 
initially discovered. This can be accomplished by creating 
chemical libraries or isolating natural compounds from 
plants, bacteria, and fungi. The next phase is to identify the 
lead chemical with the most promising potential for 
medication development. Lead optimization involves 
changing a selected lead to boost specificity and 
effectiveness at lower doses. Therapeutic candidates undergo 
an iterative process that includes cellular tests and structure-
activity connections to improve their functional qualities. 
Animal models are utilized for in-vivo studies, including 
pharmacokinetic and toxicity assessments.  
Following preclinical research, the medication candidate is 
tested on patients in clinical trials [7,8]. Clinical trials are 
crucial for assessing drug efficacy and patient safety. The 
method is time-consuming and inefficient. Pharmaceutical 
businesses therefore look for ways to cut costs and expedite 
their projects. Artificial Intelligence (AI) refers to a 

machine's capacity to mimic human cognitive processes, 
such as learning and problem-solving. AI systems that are 
based on technology can mimic human intellect via the use 
of a variety of advanced tools and networks. AI-based 
technologies are increasingly being deployed at various drug 
discovery phases to save time and increase profitability. 
These encompass a range of activities such as computational 
organic synthesis, compound production, quantum 
mechanics (QM)-based compound attribute calculation, real-
time cell sorting, cell classification, and more [9]. 

III. Molecular representations 
An essential aspect of AI-based medication discovery and 
analysis is the conversion of molecules into a computer-
readable format while preserving their inherent 
physicochemical characteristics, given the rapid expansion 
of natural products [10]. A range of descriptors have been 
suggested to describe medications; these descriptors can be 
categorized into four groups based on their dimensionality. 
Several open-source toolkits, like OpenBabel [11] and 
ChemmineR [12], have been proposed to speed up drug 
development by calculating molecular descriptors and 
structures.  
 The simplest molecular representation is the zero-
dimensional (0D) descriptor, derived from medication 
chemical formulas [13]. The 0D descriptor often comprises 
molecular weight, atom number, atom type count, and other 
basic characteristics, such as the quantity of heavy atoms. 
The 0D descriptor is simple and only extracts shallow 
information. 
 Drugs are encoded using the one-dimensional (1D) 
descriptor based on their substructures, including the number 
of rings, functional groups, substituent atoms, and fragments 
centered on atoms. Typically, the 1D descriptor's elements 
are binary—for example, 1/0 denotes the presence or 
absence of a substituent atom—or the frequency at which 
certain substructures occur. A simplified molecular-input 
line-entry system (SMILES) is another kind of 1D descriptor 
besides the property-based 1D descriptor [14]. SMILES 
represents medications using a string of characters. A 
medication may have multiple SMILES representations 
based on its atom order. 
 The two-dimensional (2D) descriptor takes into account 
adjacency, connectedness, and other topological properties 
of the atoms to provide more information than the one-
dimensional (1D) descriptor. Consequently, medication is 
usually represented as a graph with nodes denoting atoms 
and edges denoting bonds to extract 2D descriptors. Graph 
invariants, connectivity bonds, graph-based substructures, 
and topological descriptors are examples of property-based 
2D descriptors. The molecular fingerprint (FP), which 
encodes molecules in binary form, was proposed to extract 
more information [15]. FP, denoted by 1/0, indicates whether 
a given substructure is present or absent in a string of a given 
length. The fingerprints from the molecular access system 
[16], the daylight-like fingerprint [11], and the extended-
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connectivity fingerprint are the most widely utilized 2D FPs 
[17]. 
 The three-dimensional (3D) descriptor represents a 
molecule in 3D space [18], with each atom identified by its 
x, y, and z coordinates. The 3D descriptor provides detailed 
information about spatial and geometric configurations. 3D  

 
 
 
 
descriptors provide information on surface area, volume, and 
steric properties. Geometrical fingerprint [19] and 
pharmacophore fingerprint [20] are examples of non-
property-based 3D descriptors. They are commonly 
employed in drug development and virtual screening due to 
their ability to reflect complicated physicochemical features 
accurately. 
Figure 2 depicts schematic diagrams of compound 
representations employing 0D-3D descriptors [21]. 
Recently, graph-based approaches for encoding molecules 
have been developed, in addition to existing schemes. 
Examples of graph-based systems include convolutional 
networks for spectral and spatial graphs. A recent review 
provides more information concerning graph-based 
molecular representation approaches. The molecular graph 
representation is based on mapping atoms and bonds into sets 
of nodes and edges.  
 

 

 
It makes intuitive sense to regard the bonds in a molecule as 
edges and the atoms as nodes, but there is no reason why one 
might not think of alternate mappings. Generally, nodes are 
represented by circles or spheres, and edges by lines in graph 
representations. Rather, the nodes in molecular graphs are 
typically depicted by points where the bonds connect (for 
carbon atoms) or letters that indicate the type of atom (as in 
the periodic table). 
 A molecular graph representation is a 2D object that may 
represent 3D data, such as bond angles, chirality, and atomic 
coordinates. It is necessary to express any geographic links 
between the nodes as node and/or edge attributes because 
nodes in a graph, which is a mathematical object, only have 
pairwise relationships rather than formal spatial positions 
[10]. Numerous software programs, such as ChemDraw [22], 
Mercury [23], Avogadro [24], VESTA [25], and VMD [26], 
may readily visualize 2D and 3D graph representations.  

IV. ML and DL models 
Animal models can be used in experiments to test a 
chemical's toxicity, but these investigations are expensive 
and time-consuming. As a result, ML and DL have emerged 
as desirable methods for assessing chemical toxicity. 
Figure 3 illustrates the basic processes of the ML and DL 
modeling that consist of (a) defining questions, (b) collecting 
data, (c) preprocessing data, (d) splitting data, (e) training 
models, (f) optimizing models, (g) evaluating models, (h) 
interpreting models, (i) deploying models [27]. 
Regression and classification models are the two different 
categories of machine learning models. Classification 
models are based on categorical toxicity values, whereas 
regression models are based on quantitative toxicity values 
like LD50 and LC50. Classification models are more often 
used in the field of predictive toxicology. Toxicology 
prediction models have been created using various ML and 
DL methods, including SVM, RF, KNN, and neural 
networks (NN) [28]. The ML and DL algorithms employed 
in the published toxicity prediction models are included in 
Table 1. 
 Support Vector Machines (SVM): The SVM computes the 
best linear decision boundary for class separation based on a 
sample that defines class borders. The SVM technique 
separates data by generating a hypersurface through linear 
classification. The SVM model successfully identified the 
optimal hypersurface for distinguishing two classes by a 
significant margin. SVM is a prominent machine learning 
technique that can be used for classification and regression. 
SVM is commonly used in classification problems, 
recognizing hyperplanes to enhance the margin between 
classes [29]. 
 Decision Tree (DT): the decision tree structure is similar to 
a tree's. Trees consist of roots, nodes, branches, and leaves. 
The decision tree shares structure with decision nodes, leaf 
nodes, and branches. The dataset is divided into decreasing 
entropy levels by the leaf and terminal nodes, which display 

FIGURE 1. The process of drug discovery and development. 

 

FIGURE 2. Compound representations employing 0D-3D descriptors. 
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the class label of a tree for final prediction. The tree began 
with a route node and ended by splitting nodes [30].  
 KNN- is one of the simplest machine learning algorithms. It 
predicts a chemical's activity by selecting the k chemicals 
with the shortest distances from it in a chemical space 
represented by a collection of descriptors. Based on majority 
voting, compounds are often assigned to the class with the 
highest number of k-nearest chemicals in classification. The 
KNN technique is simple to grasp and produces highly 
interpretable prediction models [28]. 
 A subclass of machine learning methods known as "deep 
learning algorithms" uses multi-layered neural networks—
thus the name "deep"—to simulate intricate patterns in huge 
datasets. Because these algorithms can automatically extract 
features and build hierarchical representations of data, they 
have attracted much interest. This makes them especially 
useful for tasks like natural language processing, picture and 
audio recognition, and more. Figure 4 presents a neural 
network with possible inputs. The order of the input, from up 
to down, concord with the bias introduced by the user [31]. 
 Important architectures for deep learning are: CNNs, or 
convolutional neural networks: 
 CNNs are deep learning types that function similarly to 
feed-forward neural networks. CNN uses rotational and 
transitional approaches for data analysis. The input data for 
the convolutional operation is applied to this neural layer. It 
additionally filters the input data. This network 
automatically trained itself based on features and patterns 
[32]. This algorithm specifically handles and examines 
visual data, such as pictures and videos. 
 RNNs (Recurrent Neural Networks): Because RNNs are 
built for sequential data, they are perfect for time series 
prediction and language modeling applications. Preserve a 
memory of past inputs through hidden states, enabling them 
to record temporal dependencies [32]. 
 Generative Adversarial Networks (GANs): These networks 
are composed of a discriminator and a generator that are 
trained concurrently. The discriminator assesses the data 
samples that the generator produces, creating highly realistic 
[33]. 

 
 
 

 

 
 
 
 

V. Challenges of AI in Toxicity Prediction 
Even with artificial intelligence’s potential, there are still a 
lot of obstacles standing in the way of its ultimate realization. 
These difficulties can be methodically divided into five main 
areas:  data, interpretability, model creation, generalizability, 
and tool-related obstacles. 

A. Data-related barriers 
Developing the best prediction models is hampered by the 
limited availability and inconsistent quality of toxicity data. It 
is possible to explain this difference by looking at the different 
experimental strategies used to address different toxicity data 
points, including liver toxicity, toxicity resulting from 
pharmacokinetic features, idiosyncratic reactions, and 
cardiogenic toxicity. 
Toxicological datasets such as Tox21 and ToxCast frequently 
suffer from data imbalances. The overrepresentation of benign 
chemicals in these databases is a characteristic. The 
unbalanced outcome has led to a bias in the models identifying 
compounds as harmless, so ignoring potentially hazardous 
chemicals and causing a serious risk to human health. Also, 
this might influence regulatory choices leading to extended 
public exposure to harmful substances and long-term health 
effects. 
 Predictions may also be based on an over-reliance on 
molecular descriptors, such as structural traits and 
physicochemical characteristics, to represent toxicity data. 
Structural features determine toxicophore qualities, while 
physicochemical aspects explain ADME (Absorption, 
Distribution, Metabolism, and Excretion) characteristics. 
They might, however, be unable to adequately convey the 
biological dynamics and interactions of in vivo settings [66]. 
Prediction errors may arise especially when toxicity results 
from interactions with the biological system or 
biotransformation produces toxic metabolites. High feature 
counts can also result in issues including data sparsity, 
overfitting, and higher processing demands.  
The "curse of dimensionality" refers to this phenomenon, in 
which excessive data dimensionality has a negative effect on 
model performance. 

FIGURE 3. Basic processes of the ML and DL modeling. 

 

FIGURE 4. A neural network with possible molecular inputs. 
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B. Models-related barriers 
Traditional methods, such as decision trees and support vector 
machines, are different from sophisticated deep learning (DL) 
models in terms of data handling and representations 
regarding toxicity prediction.  
Conventional models cannot capture complex toxicological 
patterns and interactions since they rely on manually chosen 
weighted features. On the other hand, DL models analyze data 
hierarchically, enabling them to recognize minute 
toxicological patterns. Additionally, task-specific 
characteristics that indicate toxicophoric and are essential for 
toxicity predictions can be produced using DL. Traditional 
models are simple to use, but not accurate enough for complex 
toxicological scenarios. While more accurate, DL models 
have drawbacks because of their great computational 
complexity.  
 New developments in toxicity prediction include learning 
strategies based on graphs. The DeepTox pipeline [67] is a 
prime example of these techniques, effectively improving 
toxicity data representations and exhibiting considerable gains 
in predictive efficiency. Attaining model robustness is still 
difficult, though. Scenarios with "toxicity cliffs" make this 
clear. A study on substituted phenols illustrates these 
situations well since small molecular changes such as fluoro- 
or bromo-substitution resulted in significantly varied toxicity 
[68, 69]. Certain models may not be able to identify these 
subtle structural alterations, leading to notable differences in 
their toxicity predictions. 

C. Generalizability-related barriers 
Because in vivo biological systems are complicated and have 
a wide range of toxicity endpoints, generalizability in machine 
learning models for toxicity prediction is difficult. By 
highlighting the various interactions that occur within 
biological systems, these endpoints evaluate the toxicity 
profiles of the substances. Models are usually designed for 
particular endpoints, and each one needs a different set of data 
parameters. Thus, a model that works well for one kind of 
toxicity may not work well for another [70]. 

D. Interpretability-related barriers: 
While ML models' accuracy is important, their prediction 
transparency is just as important. Functioning frequently as 
"black boxes," particularly in DL models with intricate 
structures. The intricate topologies of these models, with 
numerous layers of interconnected nodes that independently 
choose features for predictions, make it difficult to understand 
the logic underlying their conclusions. Even the model 
developers cannot fully understand these models' internal 
workings. Decisions made in predictive toxicology, where 
choices have broad effects on drug development and public 
health, require a grasp of the ratio of underlying toxicity 
projections.  

Without unambiguous interpretability, scientists may find it 
difficult to respond to important queries such as "How toxic is 
this compound?" or "Does the found toxicity justify excluding 
the compound, or does it still meet the criteria for potential 
hit?" For toxicologists and chemists, this knowledge is 
essential, especially when the substance under investigation 
has great promise for future drug discovery. It may be possible 
to modify the substance to reduce toxicity while maintaining 
its therapeutic qualities by having a thorough knowledge of the 
rationale for the modality [70].  
Furthermore, in regulatory contexts, choosing too cautiously 
and maybe missing out on useful substances can arise from an 
inability to understand toxicity model predictions. 

E. Tool-related barriers: 
When predicting toxicity, the decision between commercial 
and open-access techniques is crucial. Although open-access 
technologies are widely available, their usability, 
dependability, and predictability are typically compromised 
by their lack of advanced predictive capabilities and user- 
friendly services. On the other hand, commercial tools are 
more expensive and may not be entirely transparent, but they 
are also more effective and user focused. The effectiveness 
and safety of drug development are greatly impacted by this 
decision [71].  
To maximize the drug discovery process and lower the chance 
of late-stage drug withdrawals, the main problem is striking a 
balance between the accuracy of commercial tools and the 
accessibility of open-access technologies [72]. 

VI. CONCLUSION 
Estimating the toxicity of drug candidates is crucial in drug 
discovery, as it can lead to high costs, failures in later phases, 
and withdrawals. Based on the existing data, ML and DL 
models could be viable methods for serving as early filters of 
dangerous chemicals during the drug discovery process, even 
with their ongoing limitations discussed in this review. 
This review highlights a brief Overview of chemical toxicity 
and drug processes. We focus on the recent progress and 
outstanding challenges in the area, describing the state-of-the-
art models implemented for chemical toxicity prediction. The 
type of molecular representation, ML and DL algorithms are 
also explained. 
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TABLE I 
SUMMARIZES CURRENT ML AND DL MODELS FOR PREDICTIVE TOXICOLOGY

 

Ref# Objectives Methods Used Limitations year 

[34] 

Predict toxicity of chemicals using 
molecular similarity and machine-
learning models. 
Provide a freely available computational 
platform for toxicity prediction. 

Molecular similarity and 
machine-learning models. 
In silico methods for toxicity 
prediction. 

No limitations mentioned.  

2024 

[35] 

 Develop a new approach method for 
chemical-mixture toxicity assessment. 
Integrate AI with pathophysiology to 
predict toxicity mechanisms 
comprehensively. 

 AI-HNN and CPTM for toxicity 
prediction. 
Integration of AI-HNN and CPTM 
into AI-CPTM framework. 

 Absence of comprehensive methods for 
toxicity assessment of mixtures. 
Standalone AI models have limitations 
in identifying toxic chemicals. 

2024 

[36]  

Identify chemical substructures 
responsible for hidden neuron 
activation. 
Explain model predictions using 
associated substructures for 
individual compounds. 

SHAP and integrated gradients 
for feature attribution. 
Novel technique identifies 
chemical substructures activating 
hidden neurons. 

Understanding predictions made by 
complex neural network models is 
difficult. 
Current techniques do not explain 
how compounds are transformed in 
layers. 

2024 

[37] 

Develop 3MTox model for toxicity 
identification. 
Achieve state-of-the-art performance 
on toxicity benchmark datasets. 

3MTox model with BERT 
backbone and motif graph input. 
Classical ML and DL methods 
for toxicity prediction 

Over-reliance on artificial features. 
Easy overfitting with classical ML 
and DL methods 2024 

[38] 

Develop deep learning models for 
predicting compound toxicity. 
Integrate models for virtual screening 
of low-toxicity drug candidates. 

Graph convolutional network 
(GCN) regression model for 
acute toxicity prediction. 
Multiple GCN binary 
classification models for different 
toxicity types 

Addressed data size, label type, and 
distribution variations. 
No specific limitations mentioned in 
the abstract section 2024 

[39] 

Review deep learning for predictive 
toxicology assessment. 
Highlight early detection of adverse 
drug reactions. 

Deep learning techniques. 
Traditional methods like animal 
testing. 

 

Limited data availability and quality 
for training deep learning models. 
Imbalanced toxicity datasets can lead 
to biased model performance. 

 

2024 

[40] 

Develop hybrid quantum-classical 
neural network for drug toxicity 
prediction. Transfer learnable weights 
from quantum to classical devices 

Quantum-classical neural 
network for drug toxicity 
prediction. 
Hadamard test for efficient inner 
product estimation in quantum 
computing 

Noisy intermediate-scale quantum 
devices face decoherence and gate 
errors. 
Quantum-classical neural network 
aims to address computational 
complexity challenges. 

2024 

[41] 

Develop hybrid model to predict 
chemical hepatotoxicity. 
Improve risk assessments for 
environmental and health concerns 

Hybrid model combining in vitro 
assay and chemical structures. 
Machine learning for quantitative 
structure-activity relationship 
(QSAR) modeling 

Predictivity of hepatotoxicity model 
initially at 0.59. 
Improved to 0.8 with inclusion of 37 
structural alerts 

2024 

[42] 

Develop models for predicting ocular 
toxicity of chemicals. 
Enhance model interpretability using 
SHAP and attention weights analysis. 

Machine learning and deep 
learning algorithms. 
SHAP method and attention 
weights analysis 

Reliance on data quality and quantity 
for model performance. 
Importance of balancing data quality 
and model interpretability. 

2024 

[43] 

Predict acute dermal toxicity using 
machine learning. 
Identify important features and 
structural fragments associated with 
toxicity. 

Machine learning and deep 
learning algorithms. 
SARpy, Shapley additive 
explanation, attentive FP 
heatmap 

No direct identification of acute 
dermal toxicity through animal 
experiments. 
Difficulty in assessing acute dermal 
toxicity of potential compounds. 

2024 

[44]  

Assess in silico chemical toxicity 
prediction for occupational cancer 
prevention. 
Develop predictive models for 
different toxicities in recent years. 

Machine learning techniques for 
quantitative regression and 
qualitative classification studies. 
Development of predictive 
models for different toxicities in 
recent years. 

Obstacles and shortcomings in drug 
safety assessment. 
Enhancements needed for future drug 
safety assessment. 2024 

[45] 

Develop a problem formulation 
framework for in silico toxicology. 
Identify gaps and inconsistencies in in 
silico toxicology problem 
formulations. 

Developed a problem 
formulation framework. 
Modified and applied a PF 
framework from risk assessment 
literature 

PFs for in silico toxicology lack 
consistency in components. 
PFs need to address higher-level 
conceptual questions. 

2024 



                                                                                              E. Shehab et al.: Chemical Toxicity Prediction Based on Artificial Intelligence: A Review 

8 VOLUME 1, NUMBER 1, 2025 

Ref# Objectives Methods Used Limitations year 

[46] 

Develop small molecule toxicity 
prediction model. 
Improve efficiency of research and 
development in drug design. 

Graph attention network model 
proposed. 
Attention mechanism used to 
mine connection relationships 
between atoms 
 

Traditional ML methods can't use 
molecules directly as inputs. 
Difficulty in accurately extracting 
molecular features. 2023 

[28]  

Summarize machine learning and 
deep learning toxicity prediction 
models. 
Highlight importance of dataset 
quality for model performance. 

Machine learning algorithms: 
SVM, random forest, k-NN, 
ensemble. 
Deep learning algorithms: Neural 
network 

Traditional toxicity assays are 
complicated, costly, and time-
consuming. 
Different datasets may impact model 
performance in toxicity prediction. 

2023 

[47]  

Investigate EGNNs for toxicity 
prediction using 3D molecular 
structures. 
Enhance ML models for toxicity 
prediction with 3D geometry 
information. 

Equivariant Graph Neural 
Networks (EGNNs). 
Equivariant transformer (ET) 
model in TorchMD-NET 

Physicochemical property total 
energy not related to toxicity 
prediction. 
No direct relationship between 3D 
molecule representations and toxicity. 

2023 

[48]  

Predict toxicity accurately using 
multi-task deep learning model. 
Provide contrastive molecular 
explanations for toxicity predictions. 

Multi-task deep learning model 
for toxicity prediction. 
Contrastive explanation method 
for model predictions 

Highly skewed ClinTox test set with 
few 'toxic' molecules. 
Minimal recovery of known 
toxicophores for clinical endpoints.  

2022 

[49]  

Develop predictive models for drug 
toxicity. 
Integrate informatics and biology to 
build foundation for predictions. 

Integration of informatics and 
biology. 
Development of DTox for 
predicting drug toxicity 

Lack of comprehensive data on drug 
toxicity. 
Challenges in integrating diverse data 
sources 

2022 

[50] 

Analyze EPA CompTox Chemical 
Dashboard data and tools. 
Evaluate utility for next generation 
risk assessment and toxicity 
prediction 

NAMs: in chemico, in silico, in 
vitro approaches. 
Data curation, predictive tools, 
case studies discussed 

Limited availability of experimental 
data for some substances. 
Challenges in integrating diverse data 
sources for predictive modeling. 

2023 

[51]  

Predict broad toxicities using induced 
pluripotent stem cells. 
Achieve high accuracy in toxicity 
predictions for various categories 

ES cell gene networks combined 
with developmental toxicity 
testing. 
Transfer learning from ES cell 
data to predict toxicities  

Animal testing limited applicability to 
humans. 
Desire for effective alternatives due to 
animal protection concerns. 

2021 

[52]  

Link mass spectra of chemicals to 
toxicity endpoints. 
Utilize machine learning and 
experimentation for analysis. 

Machine learning. 
Experimentation.  

Limited number of chemicals studied. 
Machine learning model performance 
variability 2022 

[53]  

Improve compound toxicity 
prediction using GCN and SSL. 
Investigate if GCN is superior to other 
ML methods. 

Semi-supervised learning (SSL) 
algorithms. 
Graph Convolution Neural 
Network (GCN) with Mean 
Teacher (MT) SSL  

Limited availability of annotated 
toxicity data. 
Time-consuming and costly 
traditional toxicity testing methods 2021 

[54] 

Develop models to predict respiratory 
toxicity of chemicals. 
Identify significant molecular 
descriptors for accurate predictions 

Eight machine learning models 
utilized for prediction. 
Methods include SVM, MLP, 
XGB, RF, LR, ABDT, KNN, NB 

Lack of data availability statement. 
No conflict of interest declaration 
provided 2022 

[55]  

Develop ML models for toxicology 
predictions. 
Implement consensus approach to 
improve predictive performance 

VenomPred platform employs in-
house Machine Learning models. 
Consensus approach combining 
results of different ML models 
used. 

In vitro and in vivo methods limited 
by resources. 
Ethics, time, budget constraints in 
toxicity prediction methods. 

2022 

[56]  

Compare traditional and deep 
learning approaches for toxicity 
prediction. 
Evaluate performance of different 
models on toxicity datasets. 

Traditional physico-chemical 
descriptor and machine learning-
based approaches. 
Descriptor-free, SMILES-based, 
deep learning BERT 
architectures 

No limitations mentioned in the 
paper. 

2022 

[57]  

Predict pharmacokinetics and toxicity 
for diverse targets. 
Support molecular optimization and 
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accuracy, interpretability, and 
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pharmacokinetics and toxicity for 
diverse targets. 
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[58] 
Develop machine learning model for 
toxic dispersion casualty prediction. 

Machine learning based 
quantitative property-

- 
2022 

https://typeset.io/papers/prediction-of-broad-chemical-toxicities-using-induced-2sutti6sz2
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