

VOLUME 1, Number 1, 2025 9

Received January 5, 2025, February 30, 2025, date of publication May 1, 2025.

Digital Object Identifier 10.21608/ijaici.2025.340085.1004

Using the Quasi-Newton Method to Solve
Nonlinear Least Squares Regression Problems

Esraa S. Atallah1, Ahmed Hagag1, Eman M. Ali1, Tamer A. Abassy1
1 Faculty of Computers and Artificial Intelligence, Benha University, Benha, Qalyubia Governorate, Egypt.
Corresponding author: Ahmed Hagag (e-mail: ahagag@fci.bu.edu.eg).

ABSTRACT In regression modeling, Gradient Descent (GD) is widely used to update parameters by
iteratively minimizing a cost function. However, GD often converges slowly and may suffer from instability
due to its reliance on first-order derivatives only. To improve convergence speed and stability, Newton’s
method utilizes second-order derivative information, aiming to find the point where the gradient vanishes.
While Newton’s method offers faster convergence, computing the exact Hessian matrix is often
computationally expensive or infeasible.
Quasi-Newton methods overcome this limitation by approximating the Hessian matrix. These methods
iteratively update an estimate of the Hessian, typically denoted as 𝐻𝐻𝑘𝑘 ≈ 𝛻𝛻2𝑓𝑓(𝑥𝑥𝑘𝑘), to guide the search
direction. A notable quasi-Newton algorithm is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method.
In this paper, we apply BFGS and its variants—including Memoryless BFGS, Limited-memory BFGS (L-
BFGS), and Scaled BFGS—to nonlinear least squares regression problems. Their performance is compared
with traditional Gradient Descent and Newton’s method, focusing on convergence behavior and optimization
efficiency. The results demonstrate the potential advantages of quasi-Newton approaches in practical
regression scenarios.

INDEX TERMS BFGS method, Gradient Descant, Newton method, Nonlinear least square, Quasi-Newton.

I. INTRODUCTION

Regression is a foundational technique in machine
learning used to predict a target variable based on
linear or nonlinear relationships between independent
and dependent variables.

𝒚𝒚� = 𝛉𝛉𝟎𝟎 + 𝛉𝛉𝟏𝟏𝒙𝒙𝟏𝟏 + 𝛉𝛉𝟐𝟐𝒙𝒙𝟐𝟐+. . +𝛉𝛉𝒙𝒙𝒏𝒏 + 𝝐𝝐 (1)
Where 𝒚𝒚� is the predicted value (dependent variable),
𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, . . ,𝒙𝒙𝒏𝒏 𝒂𝒂𝒂𝒂𝒂𝒂 independent variables, 𝛉𝛉𝟎𝟎 is the
intercept (constant value), 𝛉𝛉𝟏𝟏, 𝛉𝛉𝟐𝟐, . . , 𝛉𝛉𝒏𝒏 are
coefficients for independent variables, and 𝝐𝝐 is the
error term.
The performance of a regression model is often
evaluated using a cost function, with Mean Squared
Error (MSE) being a common choice:

MSE = 1
2m
∑ �y� (i) − y(i)�2m−1
1=0 (1)

To minimize this cost function, Gradient Descent
(GD) is widely employed. It iteratively updates the
model parameters by computing the gradient of the
cost function with respect to each parameter:

𝜃𝜃𝑛𝑛 = 𝜃𝜃𝑛𝑛 − 𝛼𝛼 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑛𝑛

 (2)
Where 𝜶𝜶 is the learning rate (step size).

GD is popular due to its simple implementation and
low memory requirements (𝑶𝑶(𝒏𝒏)), as it only uses
first-order derivatives. It performs effectively when
the initial guess is far from the optimal solution 𝒙𝒙∗,
which is typically the case in early iterations.
However, as it approaches the minimum, the updates

tend to zigzag, which slows convergence and makes
the method inefficient [3].

TABLE. I. ALGORITHM 1

Although GD is straightforward and requires minimal
memory, it often converges slowly and becomes

Gradient Descant algorithm
1. Initialization: initialize 𝑥𝑥0. Determine 𝑔𝑔0 = 𝛻𝛻𝛻𝛻(𝑥𝑥0)

Set 𝑑𝑑0 = − 𝑔𝑔0
2. for 𝑘𝑘 = 1, 2, … until convergence do
3. set stepsize 𝛼𝛼𝑘𝑘 > 0 satisfying the Wolfe line search

conditions (3)(4).
4. Compute 𝑥𝑥𝑘𝑘+1 by (2)
5. 𝑔𝑔𝐾𝐾+1 = 𝛻𝛻𝛻𝛻(𝑥𝑥𝐾𝐾+1) , 𝑑𝑑𝐾𝐾+1 = 𝑔𝑔𝐾𝐾+1

VOLUME 1, Number 1, 2025 10

inefficient as it approaches the optimal solution due to
zigzagging. To address these issues, optimization
methods that incorporate second-order information have
been developed. Newton's method uses the Hessian
matrix to improve convergence. However, computing
and inverting the Hessian matrix is computationally
expensive, particularly for high-dimensional data.

Quasi-Newton methods provide a practical alternative.
Instead of computing the Hessian directly, they
approximate it using information from successive
gradient evaluations. These methods, particularly the
BFGS family, offer a balance between convergence
speed and computational efficiency. The current study
investigates the effectiveness of BFGS and its variants
in optimizing nonlinear least squares regression models.
To improve the stability and adaptiveness of the step
size 𝜶𝜶, techniques such as the Wolfe line search are used
[1, 2]:
𝐹𝐹 (𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘) < 𝐹𝐹(𝑥𝑥𝑘𝑘) + 𝜌𝜌 𝛼𝛼𝑘𝑘𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘, (3)
 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘)𝑇𝑇𝑑𝑑𝑘𝑘 > 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘)𝑇𝑇𝑑𝑑𝑘𝑘 (4)

where 𝟎𝟎 < 𝝆𝝆 < 𝝈𝝈 < 𝟏𝟏 are constants, 𝒙𝒙𝒌𝒌 =
 𝜽𝜽𝟎𝟎,𝜽𝜽𝟏𝟏, … ,𝜽𝜽𝒏𝒏.
In iterative optimization methods, we begin with an
initial point 𝜽𝜽𝟎𝟎 and, at each iteration, compute a search
direction 𝒅𝒅𝒌𝒌 and a step size 𝜶𝜶𝒌𝒌, updating the parameters
as:

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘 𝑑𝑑𝑘𝑘 (5)
 necessary that 𝑭𝑭 (𝒙𝒙𝒌𝒌+𝟏𝟏) < 𝑭𝑭 (𝒙𝒙𝒌𝒌).

the objective function 𝑭𝑭 (𝒙𝒙𝒌𝒌+𝟏𝟏)can be approximated by
either a linear or a quadratic model,
𝑭𝑭 (𝒙𝒙𝒌𝒌+𝟏𝟏) ≈ 𝑭𝑭(𝒙𝒙𝒌𝒌) + 𝒈𝒈(𝒙𝒙𝒌𝒌)𝑻𝑻 𝒅𝒅𝒌𝒌 + 𝟏𝟏

𝟐𝟐
𝒅𝒅𝒌𝒌

𝑻𝑻𝑯𝑯(𝒙𝒙𝒌𝒌)𝒅𝒅𝒌𝒌 (6)
where 𝒈𝒈(𝒙𝒙𝒌𝒌) = 𝜵𝜵 𝑭𝑭(𝒙𝒙𝒌𝒌) is the gradient and 𝑯𝑯(𝒙𝒙𝒌𝒌)
=𝜵𝜵𝟐𝟐𝑭𝑭(𝒙𝒙𝒌𝒌) is the Hessian matrix of 𝑭𝑭(𝒙𝒙𝒌𝒌)

A. NEWTON METHOD

The condition 𝛻𝛻𝐹𝐹(𝑥𝑥∗) = 0 , where x∗ is the minimum
point of the objective function 𝐹𝐹(𝑥𝑥), forms the basis of
Newton’s method, also known as the Newton-Raphson
method—named after Isaac Newton and Joseph Raphson
[3]. This method relies on a second-order Taylor series
approximation (see Theorem 1) to find a local minimum
by iteratively updating the input vector 𝑥𝑥. The update rule
is defined as:

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘– 𝛼𝛼𝑘𝑘 (𝛻𝛻2𝐹𝐹(𝑥𝑥𝑘𝑘))−1 𝛻𝛻 𝑓𝑓 (𝑥𝑥𝑘𝑘) (7)
Where:

• 𝛻𝛻 𝑓𝑓 (𝑥𝑥𝑘𝑘) is the gradient at iteration 𝑘𝑘,
• 𝛻𝛻2𝐹𝐹(𝑥𝑥𝑘𝑘) is the Hessian matrix (second

derivative),
• And αk, is the step size.

Advantages of Newton's Method:

1. If 𝐹𝐹(𝑥𝑥) is a quadratic function, Newton’s method
converges in a single step, regardless of the initial
starting point.

2. When the initial point 𝑥𝑥0 is sufficiently close to
the minimum, the method exhibits quadratic
convergence—a highly desirable property for
solving least squares problems.

In many optimization frameworks, Newton’s method
is considered a core component for achieving high
convergence rates [4].
Despite its advantages, Newton's method also suffers

from several notable drawbacks:
1. Lack of global convergence: In non-linear least

squares problems, Newton's method may fail to
converge. One key issue is that the computed
search direction𝑑𝑑𝑘𝑘 = (𝛻𝛻2𝐹𝐹(𝑥𝑥𝑘𝑘))−1 𝛻𝛻 𝑓𝑓 (𝑥𝑥𝑘𝑘) may
not always be a descent direction, which is
essential for ensuring the cost function decreases.

2. High computational cost: Each iteration requires
evaluating the Hessian matrix and computing its
inverse, both of which are computationally
expensive, especially for high-dimensional data.

3. Singular Hessian issue: If the Hessian is singular
or singular at any point, especially in the
preliminary stages—Newton’s method fails
because it cannot solve the resulting system of
equations.

Due to these limitations, Newton’s method is often
combined with more stable or approximate techniques,
such as quasi-Newton methods, which aim to preserve its
fast convergence without incurring the full computational
cost.

TABLE. II. ALGORITHM 2

B. QUASI-NEWTON METHOD
Newton's method is among the most fundamental methods
for dealing with unconstrained optimization problems. A
fundamental result of mathematics is that 𝛻𝛻𝛻𝛻(𝑥𝑥∗) = 0 is a
necessary condition for optimality. Finding the gradient
function's zero is the goal of Newton's method. The method
is iterative, with each iteration estimating the function

Newton algorithm
1. 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥0.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑔𝑔0 =

 𝛻𝛻𝛻𝛻(𝑥𝑥0),𝐻𝐻0 = 𝛻𝛻2𝑓𝑓(𝑥𝑥0). 𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑0 = − 𝐻𝐻0−1𝑔𝑔0.
2. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 1, 2, … 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑
3. set stepsize 𝛼𝛼𝑘𝑘 > 0 satisfying the Wolfe line search

conditions (3)(4).
4. 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘
5. 𝑔𝑔𝑘𝑘+1 = 𝛻𝛻 𝑓𝑓(𝑥𝑥𝑘𝑘),𝐻𝐻𝑘𝑘+1 = 𝛻𝛻2𝑓𝑓(𝑥𝑥𝑘𝑘),𝑑𝑑𝑘𝑘+1 =

 − 𝐻𝐻𝑘𝑘+1−1𝑔𝑔𝑘𝑘+1

VOLUME 1, Number 1, 2025 11

gradient using a linear approximation around the
𝑘𝑘𝑡𝑡ℎ iteration.

 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘 + 𝑝𝑝𝑘𝑘) ≈ 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘) + 𝛻𝛻2𝐹𝐹(𝑥𝑥𝑘𝑘)𝑝𝑝𝑘𝑘 (8)

For Newton's method to work effectively, the Hessian matrix.
𝛻𝛻2𝐹𝐹(𝑥𝑥𝑘𝑘) must be available. However, computing the
Hessian is often computationally expensive or infeasible for
large-scale problems. This challenge leads to the
development of Quasi-Newton methods, which approximate
the Hessian rather than compute it directly.
The central idea is to estimate the Hessian Hk ≈ ∇2F(xk),
and then define the search direction using this approximation.
The main problem becomes how to update the matrix Hk to
Hk+1 in a way that captures curvature information from the
function as we move from 𝑥𝑥𝑘𝑘to 𝑥𝑥𝑘𝑘+1 [5, 6]. These methods
blend the structure of Newton’s method with the
computational efficiency of Gauss-Newton approximations.
In general, Quasi-Newton methods update the solution using
(Equi 7) Where: 𝑑𝑑𝑘𝑘 is the solution to 𝐻𝐻𝑘𝑘𝑑𝑑𝑘𝑘 = −𝑔𝑔𝑘𝑘,
𝛼𝛼𝑘𝑘 satisfies Wolfe line search conditions
𝐻𝐻𝑘𝑘 approximates the true Hessian.
The matrix is updated by: 𝐻𝐻𝑘𝑘+1 = 𝐻𝐻𝑘𝑘 + 𝑈𝑈𝑘𝑘
To maintain symmetry and positive definiteness—key
properties of the true Hessian—Quasi-Newton methods
enforce the secant condition (also called the Quasi-Newton
condition):
𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘 + α𝑘𝑘𝑑𝑑𝑘𝑘) ≈ 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘) + 𝛻𝛻2𝐹𝐹(𝑥𝑥𝑘𝑘)(𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘) (9)
Define:
𝑠𝑠𝑘𝑘 = 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 = α𝑘𝑘𝑑𝑑𝑘𝑘,𝑦𝑦𝑘𝑘 = 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘+1) − 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘),

Then the secant condition becomes: 𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑠𝑠𝑘𝑘
Additionally, we ensure the updated Hessian approximation
satisfies: 𝐻𝐻𝑘𝑘+1𝑠𝑠𝑗𝑗 = 𝐻𝐻𝑘𝑘𝑠𝑠𝑗𝑗 ; 𝑗𝑗 = 𝑘𝑘 – 1, … ,𝑘𝑘 − 𝑛𝑛 + 1.
The 𝑑𝑑𝑘𝑘 + 1 is given by: 𝐻𝐻𝑘𝑘 + 1𝑑𝑑𝑘𝑘 + 1 = −𝑔𝑔𝑘𝑘 + 1, (10)
or directly using the inverse Hessian approximation

 𝑑𝑑𝑘𝑘 + 1 = −𝐵𝐵𝑘𝑘 + 1𝑔𝑔𝑘𝑘 + 1, (11)
where 𝐵𝐵𝑘𝑘 + 1 approximates the inverse Hessian,
𝐵𝐵𝑘𝑘 + 1= 𝐻𝐻𝑘𝑘 + 1

−1
Starting from an initial point 𝑥𝑥0 , these methods iteratively
produce 𝑥𝑥𝑘𝑘 + 1 until convergence to the optimal solution 𝑥𝑥∗.
Quasi-Newton methods achieve super-linear convergence
near the optimum and are considered robust and efficient for
a wide range of differentiable functions. Several variations
exist for updating the inverse Hessian, including:

• Symmetric Rank-One (SR1) update [7, 8]
• Rank-Two updates such as the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) method [7-10]
These methods have become some of the most popular and
widely used techniques in numerical optimization due to their
balance of speed and accuracy.

II. PROBLEM DEFINITION
 Regression models are a type of least squares problem,
where the goal is to minimize the cost function. This
minimization yields the optimal weights (parameters 𝜽𝜽∗) as

in (2). As previously mentioned, the cost function is
typically optimized using the Gradient Descent method.
However, this method suffers from slow convergence and
instability. Therefore, it is proposed to employ second-order
methods such as Quasi-Newton techniques.
This paper aims to apply the BFGS method and its
variants—including the Memoryless BFGS method [10,
11],the Limited-Memory BFGS method [11-14], the Scaled
BFGS method [9], and the Double Scaled BFGS method
[9]—to the least squares problem exemplified by the
regression model, and to identify the most effective
approach.
The most effective Quasi-Newton update for approximating
the Hessian is the BFGS formula:

𝑩𝑩𝒌𝒌 + 𝟏𝟏 = 𝑩𝑩𝒌𝒌 + 𝑩𝑩𝒌𝒌𝒔𝒔𝒌𝒌𝒔𝒔𝒌𝒌𝑻𝑻𝑩𝑩𝒌𝒌
𝒔𝒔𝒌𝒌𝑻𝑻𝑩𝑩𝒌𝒌 𝒔𝒔𝒌𝒌

+ �𝒚𝒚𝒌𝒌𝒚𝒚𝒌𝒌
𝑻𝑻

𝒚𝒚𝒌𝒌𝑻𝑻 𝒔𝒔𝒌𝒌
� (12)

This satisfies the secant equation (11) and represents a rank-
two update. Applying the Sherman-Morrison-Woodbury
formula [15] twice yields the update for the inverse Hessian
in the BFGS method. Assuming 𝑯𝑯𝒌𝒌 is the inverse
approximation of the Hessian at iteration 𝒌𝒌:

𝐻𝐻𝑘𝑘 + 1 = 𝐻𝐻𝑘𝑘 −
𝑠𝑠𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇𝐻𝐻𝑘𝑘+𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘𝑠𝑠𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
�1 𝑦𝑦𝑘𝑘𝑇𝑇𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
� � 𝑠𝑠𝑘𝑘𝑠𝑠𝑘𝑘

𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
� (13)

A key property of BFGS is that 𝑯𝑯𝒌𝒌+𝟏𝟏 remains positive
definite for any 𝒌𝒌, provided that 𝑯𝑯𝒌𝒌 is positive definite. If
the inverse Hessian approximation 𝑯𝑯𝒌𝒌 estimates the
curvature of the objective function incorrectly—thus
slowing down the iteration—it tends to correct itself in
subsequent steps. This is one of the self-correcting features
of the BFGS algorithm. The quality of the Wolfe line search
implementation plays a significant role in preserving this
self-correcting behavior. Using the initial step length 𝜶𝜶 =
 𝟏𝟏 in the Wolfe line search leads to super-linear
convergence. Due to its numerous advantages, the BFGS
update is widely considered one of the most robust and
effective Quasi-Newton methods [1, 2].

TABLE. III. ALGORITHM 3

 symmetric rank two (BFGS)
1. Initialization:

initialize 𝑥𝑥0.
 Determine 𝑔𝑔0 = 𝛻𝛻𝛻𝛻(𝑥𝑥0)
𝐻𝐻0 = 𝛻𝛻2 𝐹𝐹(𝑥𝑥0).
Set 𝑑𝑑0 = 𝐻𝐻0−1 𝑔𝑔0

1. for 𝑘𝑘 = 1, 2, … until convergence do
2. set stepsize 𝛼𝛼𝑘𝑘 > 0 conditions (3)(4).
3. set 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘
4. set 𝑠𝑠𝑘𝑘 = 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 and 𝑦𝑦𝑘𝑘 = 𝑔𝑔𝑘𝑘+1 − 𝑔𝑔𝑘𝑘,
5. use (13) to update the inverse Hessian.
6. Compute search direction 𝑑𝑑𝑘𝑘 + 1 = −𝐻𝐻𝑘𝑘 + 1𝑔𝑔𝑘𝑘 + 1.

III. METHODOLOGY
The BFGS method has notable characteristics, as previously
mentioned, such as its self-correcting nature. If the current

VOLUME 1, Number 1, 2025 12

Hessian approximation 𝑯𝑯𝒌𝒌 is inaccurate, the BFGS method
tends to correct it within a few iterations. It is also one of
the most efficient and accurate methods for solving
minimization problems. However, it requires a large amount
of memory per iteration, making it computationally
expensive with complexity (𝑶𝑶(𝒈𝒈(𝒏𝒏)) = 𝒏𝒏𝟐𝟐). As a result, it is
primarily suitable for small- to medium-scale problems. To
address high-dimensional problems, modified methods that
reduce memory usage and computational complexity to
𝑶𝑶(𝒈𝒈(𝒏𝒏)) = 𝒎𝒎𝒎𝒎 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒎𝒎 > 𝒏𝒏)have been proposed. These
are known as the Memoryless BFGS and Limited-Memory
BFGS (L-BFGS) methods. Additionally, to enhance
performance, a modified version called the Self-Scaling
BFGS has been introduced.

A. MEMORY-LESS BFGS METHOD
 Memoryless BFGS eliminates the need to store and
update the approximate Hessian matrix explicitly. Instead,
it computes the search direction directly using past gradients
and step sizes, significantly reducing memory usage and
computational cost.
Assuming 𝑯𝑯𝒌𝒌 = 𝑰𝑰 , the Memoryless BFGS method is
defined by the update:

 𝐻𝐻𝑘𝑘 + 1 = 𝐼𝐼 − 𝑠𝑠𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇+𝑦𝑦𝑘𝑘𝑠𝑠𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
+ �1 + 𝑦𝑦𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
� � 𝑠𝑠𝑘𝑘𝑠𝑠𝑘𝑘

𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
� (14)

The memoryless BFGS and memoryless SR1 methods
differ significantly. The memoryless BFGS method is well-
defined when the step size is chosen using Wolfe line search
conditions, which guarantee (𝒔𝒔𝒌𝒌 − 𝒚𝒚𝒌𝒌)

𝑻𝑻𝒚𝒚𝒌𝒌 ≠ 𝟎𝟎 at each
iteration. On the other hand, in the case of the SR1 method,
Wolfe line search does not ensure that (𝒔𝒔𝒌𝒌 − 𝒚𝒚𝒌𝒌)

𝑻𝑻𝒚𝒚𝒌𝒌 ≠ 𝟎𝟎 [3,
7].

B. LIMITED MEMORY BFGS
 Limited-memory BFGS (L-BFGS) stores only a limited
number of previous updates to the gradient and position
vectors (typically the most recent m updates), allowing it to
approximate the inverse Hessian efficiently without the
need to handle large matrices. This makes L-BFGS
particularly suitable for large-scale optimization problems.
L-BFGS applies the BFGS update using information from
only the most recent 𝑚𝑚 iterations to update the base matrix
𝐻𝐻0 multiple times, forming 𝐻𝐻𝑘𝑘 + 1. Its implementation is
identical to that of the standard BFGS method, except that
the inverse Hessian approximation is not formed explicitly.
Instead, it is represented using a limited number of BFGS
updates. This method often yields a fast linear convergence
rate and requires only vector operations, significantly
reducing memory demands.
Equation (13) is derived from:

𝐻𝐻𝑘𝑘 + 1 = �𝐼𝐼 −
𝑠𝑠𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
�𝐻𝐻𝑘𝑘 �𝐼𝐼 −

𝑦𝑦𝑘𝑘𝑠𝑠𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
� + �

𝑠𝑠𝑘𝑘𝑠𝑠𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
� (15)

Let: 𝑉𝑉𝑘𝑘 = �𝐼𝐼 − 𝑠𝑠𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
�, 𝑝𝑝𝑘𝑘 = 1

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘

Then:𝐻𝐻𝑘𝑘 + 1 = [𝑉𝑉𝑘𝑘

𝑇𝑇 …𝑉𝑉𝑘𝑘−𝑚𝑚+1
𝑇𝑇]𝐻𝐻𝑘𝑘−𝑚𝑚+1[𝑉𝑉𝑘𝑘 …𝑉𝑉𝑘𝑘−𝑚𝑚+1]

 + 𝑝𝑝𝑘𝑘−𝑚𝑚+1 [𝑉𝑉𝑘𝑘
𝑇𝑇 …𝑉𝑉𝑘𝑘−𝑚𝑚+1

𝑇𝑇]𝑠𝑠𝑘𝑘−𝑚𝑚+1𝑠𝑠𝑘𝑘−𝑚𝑚+1
𝑇𝑇 [𝑉𝑉𝑘𝑘 …𝑉𝑉𝑘𝑘−𝑚𝑚+1]

 +. . . +𝑠𝑠𝑘𝑘𝑠𝑠𝑘𝑘𝑇𝑇 (16)

This final formula avoids matrix storage and uses only
vector operations, making it suitable for large-scale
optimization problems.

C. SCALED BFGS METHODS
The standard BFGS method may perform poorly on non-
convex minimization problems when using an exact line
search. To enhance its performance, self-scaling BFGS
methods have been introduced. These methods are based on
the concept of scaling the eigenvalue structure of the BFGS
approximation to better match the true Hessian matrix.
The scaled BFGS update formula is:

 𝐻𝐻𝑘𝑘 + 1 = 𝐻𝐻𝑘𝑘 −
𝑠𝑠𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇𝐻𝐻𝑘𝑘+𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘𝑠𝑠𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
+ � 1

𝛾𝛾𝑘𝑘
+ 𝑦𝑦𝑘𝑘𝑇𝑇𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
� � 𝑠𝑠𝑘𝑘𝑠𝑠𝑘𝑘

𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
� (17)

Here, 𝛾𝛾𝑘𝑘 is a positive parameter that must be determined
during the optimization process. This algorithm is simple to
implement, but it is applicable only to small- and medium-
scale unconstrained problems.

IV. RESULT

In this section, we investigate the efficiency of the BFGS
method and its modified variants—Memoryless BFGS
(ML-BFGS) and Limited-memory BFGS (L-BFGS). These
methods are compared to the traditional Gradient Descent
(GD) method and the Newton method. The performance
metric used for comparison is the Mean Squared Error
(MSE).

A. EXPERIMENT 1:
For this experiment, we used the dataset from the Elo

Merchant Category Recommendation competition [16, 17].
Elo is one of the largest payment companies in Brazil. In
this competition, Elo collaborated with various merchants
to offer exclusive deals or discounts to their cardholders.

The key research questions in this context include:
• Do these promotions benefit the merchant or the

customer?
• Do customers find their experiences enjoyable?
• Do merchants observe an increase in repeat

customers?

Given the importance of personalization, the objective of
the dataset is to analyze customer behavior and assess
whether such promotions influence loyalty or recurring
purchases [16].
When the number of iterations is set to 5, it is observed that
Gradient Descent (GD) fails to converge, whereas BFGS
and its modified variants demonstrate greater stability and
faster convergence. As illustrated in Figure 1(a), the cost
function computed by GD remains high, while BFGS and
its variants maintain lower and more stable cost values.

VOLUME 1, Number 1, 2025 13

TABLE. IV. EXPERIMENT 1: Elo Merchant Category

a) 5 iter a) 5 iter

a) 5 iter a) 5 iter
Fig 1 EXPERIMENT 1: Elo Merchant Category Recommendation

Increasing the number of iterations to 10 still does not yield
acceptable results for GD. As shown in Figure 1(b), the
cost function from GD remains high and unstable, while
BFGS and its modified methods continue to exhibit
robustness and stability, achieving satisfactory cost values.
At 20 iterations, Figure 1(c) shows that GD begins to
converge, yet the results are still not stable. In contrast,
BFGS-based methods remain consistently effective.
To further explore the iteration threshold at which GD
becomes comparable in stability to BFGS, the number of
iterations increased to 30, as depicted in Figure 1(d). While
all BFGS methods—standard BFGS, Memoryless BFGS
(ML-BFGS), Limited-memory BFGS (L-BFGS), and
Scaled BFGS—produce satisfactory and stable results,
ML-BFGS achieves the lowest Mean Squared Error
(MSE) and demonstrates superior performance.

TABLE. V. Different tolerance

Model score MSR Time
Five iterations

GD 0.533 6.63423 00.189930
BFGS 0.808 2.72375 00.881986

ML_BFGS 0.817 2.60933 01.053210
L_BFGS 0.808 2.72375 01.025684
S_BFGS 0.808 2.72375 01.113555

Ten iterations
GD 0.71 4.03207 00.752

BFGS 0.82 2.72375 01.167
ML_BFGS 0.82 2.5655 02.510
L_BFGS 0.81 2.5614 02.33
S_BFGS 0.81 2.5614 02.54

Twenty iterations
GD 0.805 2.77 01.46

BFGS 0.82 2.54 03.748
ML_BFGS 0.82 2.55 05.16
L_BFGS 0.82 2.54 04.53
S_BFGS 0.82 2.54 04.31

Thirty iterations
GD 0.82 2.60 03.49

BFGS 0.83 2.54 08.00

Model score MSR Time
tolerance= 0.001
GD 2.577 36 05.45
BFGS 2.556 11 02.78
ML_BFGS 2.563 11 02.87
L_BFGS 2.556 11 02.48
S_BFGS 2.556 11 02.52
tolerance= 𝟏𝟏𝟏𝟏 ∗ 𝒆𝒆−𝟓𝟓
GD 2.566 49 9.79
BFGS 2.54 35 05.35
ML_BFGS 2.563 32 07.74
L_BFGS 2.54 35 07.44
S_BFGS 2.54 36 06.40

VOLUME 1, Number 1, 2025 14

The compared models were updated to terminate early when
the cost function falls below a predefined tolerance
threshold (tolerance = 0.001). This modification highlights
the faster convergence of BFGS and its modified methods
in comparison to Gradient Descent (GD). As demonstrated
in Table V and Figure 2, the BFGS-based methods reach the
stopping criterion more quickly, thereby reducing
computational time and demonstrating greater efficiency
than GD.

Fig 2 Final converges.

B. EXPERIMENT 2:
The ‘GreyLivingstone’ notebook was utilized for feature
extraction, and its output was employed to evaluate the
proposed models[18] . The resulting dataset consists of
770 features and 201,917 records. This experiment
represents the second phase of our evaluation and was
conducted using Google Colab with a T4 GPU
environment to ensure efficient processing and execution.

TABLE. VI. EXPERIMENT 2: Th ‘GreyLivingstone’

a) Five iter b) Ten iter
Fig 3 EXPERIMENT 2: The ‘GreyLivingstone’

We updated the compared models to include an early

stopping criterion, where training halts if the cost
function drops below a specified tolerance value
(tolerance = 0.001). This enhancement demonstrates that
the BFGS method and its modified variants achieve
convergence faster than other regression approaches,
with all BFGS-based models successfully converging
within sixteen iterations. This significantly reduces
computational time, as illustrated in Table VII and
Figure 4.

TABLE. VII. Different regressors

Model score MSR Time
five iterations

BFGS 0.78 3.09 17.50
ML_BFGS 0.78 3.09 16.48
L_BFGS 0.78 3.09 17.16
S_BFGS 0.78 3.09 19.09

Ten iterations
BFGS 0.82 2.52 33.67

ML_BFGS 0.82 2.52 34.5
L_BFGS 0.82 2.52 36.08
S_BFGS 0.82 2.52 36.95

Twenty iterations
BFGS 0.82 2.50 01:06.60

ML_BFGS 0.82 2.50 01:05.87
L_BFGS 0.82 2.50 01:12.43
S_BFGS 0.82 2.50 01:12.39

Model Train
accuracy

Test
accuracy

MSR Time

BFGS 0.83 0.82 2.50 30.08
ML_BFGS 0.83 0.82 2.50 29.51

Linear
Regression

0.83 0.82 2.50 11.35

Ridge
Regression

0.83 0.82 2.50 01.93

Lasso
Regression

0.74 0.73 3.83 01.33

Elastic Net 0.65 0.64 4.98 01.39
Decision Tree 1.00 0.64 5.08 02:58.97

K-Nearest 0.61 0.37 8.89 00.75
Neural

Network
(MLP)

0.84 0.82 2.50 01:48.72

VOLUME 1, Number 1, 2025 15

Fig 4 final converge (ML_BFGS)

V. CONCLUSION

In regression models, Gradient Descent (GD) is a traditional
optimization technique; however, it often suffers from slow
convergence and instability. To address these issues,
second-order methods such as Quasi-Newton algorithms are
utilized. Among them, the BFGS method is known for its
fast convergence on classical problems. Additionally,
several modified versions of BFGS have been developed to
improve performance, particularly in large-scale settings.
These include the Memoryless BFGS (ML-BFGS),
Limited-Memory BFGS (L-BFGS), and Scaled BFGS.
Among these, ML-BFGS demonstrated the best overall
performance, offering a balance of accuracy and efficiency,
and proved to be the fastest in convergence.

Refferences

[1] P. WOLFE, "[CONVERGENCE CONDITIONS FOR

ASCENT METHODS]," in SIAM REVIEW vol. 11, ed, 1969,
pp. 226-&.

[2] P. WOLFE, "[CONVERGENCE CONDITIONS FOR
ASCENT METHODS .2. SOME CORRECTIONS]," in SIAM
REVIEW vol. 13, ed, 1971, pp. 185-&.

[3] C. N. L. Eu, "Numerical Analysis in Nonlinear Least Squares
Methods and Applications," 2017.

[4] B. S. Goh, "Greatest descent algorithms in unconstrained
optimization," Journal of optimization theory and applications,
vol. 142, pp. 275-289, 2009.

[5] M. Al-Baali, E. Spedicato, and F. Maggioni, "[Broyden's quasi-
Newton methods for a nonlinear system of equations and
unconstrained optimization: a review and open problems]," in
OPTIMIZATION METHODS & SOFTWARE vol. 29, ed,
2014, pp. 937-954.

[6] J. H. Runnoe, "Quasi-Newton methods for unconstrained
optimization," 2020.

[7] N. Andrei, "[A note on memory-less SR1 and memory-less
BFGS methods for large-scale unconstrained optimization]," in
NUMERICAL ALGORITHMS vol. 90, ed, 2022, pp. 223-240.

[8] S. Nakayama, Y. Narushima, and H. Yabe, "A memoryless
symmetric rank-one method with sufficient descent property
for unconstrained optimization," Journal of the Operations
Research Society of Japan, vol. 61, no. 1, pp. 53-70, 2018.

[9] N. Andrei, "[An adaptive scaled BFGS method for
unconstrained optimization]," in NUMERICAL
ALGORITHMS vol. 77, ed, 2018, pp. 413-432.

[10] N. Andrei, "[A double parameter self-scaling memoryless
BFGS method for unconstrained optimization]," in
COMPUTATIONAL & APPLIED MATHEMATICS vol. 39,
ed, 2020.

[11] D. Saputro and P. Widyaningsih, "[Limited Memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) Method for The
Parameter Estimation on Geographically Weighted Ordinal
Logistic Regression Model (GWOLR)]," in 4TH
INTERNATIONAL CONFERENCE ON RESEARCH,
IMPLEMENTATION, AND EDUCATION OF
MATHEMATICS AND SCIENCES (ICRIEMS):
RESEARCH AND EDUCATION FOR DEVELOPING
SCIENTIFIC ATTITUDE IN SCIENCES AND
MATHEMATICS vol. 1868, ed, 2017.

[12] H. Liu, Y. Li, and M. Zhang, "[An Active Set Limited Memory
BFGS Algorithm for Machine Learning]," in SYMMETRY-
BASEL vol. 14, ed, 2022.

[13] H. Tankaria, S. Sugimoto, and N. Yamashita, "A regularized
limited memory BFGS method for large-scale unconstrained
optimization and its efficient implementations," Computational
Optimization and Applications, vol. 82, no. 1, pp. 61-88, 2022.

[14] G. Yuan, Z. Wei, and S. Lu, "[Limited memory BFGS method
with backtracking for symmetric nonlinear equations]," in
MATHEMATICAL AND COMPUTER MODELLING vol.
54, ed, 2011, pp. 367-377.

[15] Y. Hao and V. Simoncini, "[The Sherman-Morrison-
Woodbury formula for generalized linear matrix equations and
applications]," in NUMERICAL LINEAR ALGEBRA WITH
APPLICATIONS vol. 28, ed, 2021.

[16] B. E. Addison Howard, Phil Culliton. Elo Merchant Category
Recommendation [Online] Available:
https://kaggle.com/competitions/elo-merchant-category-
recommendation

[17] GreyLivingstone,
"Elo_Merchant_Category_Recommendation," ed, 2023.

[18] kaggle kernels output greylivingstone/elo-merchant-category-
recommendation -p /path/to/dest

https://kaggle.com/competitions/elo-merchant-category-recommendation
https://kaggle.com/competitions/elo-merchant-category-recommendation

