RMAICT

Received January 5, 2025, February 30, 2025, date of publication May 1, 2025.

Digital Object Identifier 10.21608/ijaici.2025.340085.1004

Using the Quasi-Newton Method to Solve
Nonlinear Least Squares Regression Problems

Esraa S. Atallah', Ahmed Hagag', Eman M. Ali', Tamer A. Abassy’

! Faculty of Computers and Artificial Intelligence, Benha University, Benha, Qalyubia Governorate, Egypt.

Corresponding author: Ahmed Hagag (e-mail: ahagag@fci.bu.edu.eg).

ABSTRACT In regression modeling, Gradient Descent (GD) is widely used to update parameters by
iteratively minimizing a cost function. However, GD often converges slowly and may suffer from instability
due to its reliance on first-order derivatives only. To improve convergence speed and stability, Newton’s
method utilizes second-order derivative information, aiming to find the point where the gradient vanishes.
While Newton’s method offers faster convergence, computing the exact Hessian matrix is often
computationally expensive or infeasible.

Quasi-Newton methods overcome this limitation by approximating the Hessian matrix. These methods
iteratively update an estimate of the Hessian, typically denoted as H, = VZf(x;), to guide the search
direction. A notable quasi-Newton algorithm is the Broyden—Fletcher—Goldfarb—Shanno (BFGS) method.
In this paper, we apply BFGS and its variants—including Memoryless BFGS, Limited-memory BFGS (L-
BFGS), and Scaled BFGS—to nonlinear least squares regression problems. Their performance is compared
with traditional Gradient Descent and Newton’s method, focusing on convergence behavior and optimization
efficiency. The results demonstrate the potential advantages of quasi-Newton approaches in practical
regression scenarios.

INDEX TERMS BFGS method, Gradient Descant, Newton method, Nonlinear least square, Quasi-Newton.

I. INTRODUCTION 0. = 6. —aZ
. . . . . . n n aen
Regression is a foundational technique in machine

2

learning used to predict a target variable based on
linear or nonlinear relationships between independent
and dependent variables.

y: 90+91X1+92X2+..+9xn+€ (1)
Where y is the predicted value (dependent variable),
X1,X3,..,X, are independent variables, 0y is the

intercept  (constant value), 04, 0,,..,0, are

coefficients for independent variables, and € is the
error term.

The performance of a regression model is often
evaluated using a cost function, with Mean Squared
Error (MSE) being a common choice:

1 EPWING N\ 2
MSE = =R (59 —y®) (1

To minimize this cost function, Gradient Descent
(GD) is widely employed. It iteratively updates the
model parameters by computing the gradient of the
cost function with respect to each parameter:

Where «a is the learning rate (step size).

GD is popular due to its simple implementation and
low memory requirements (0(n)), as it only uses
first-order derivatives. It performs effectively when
the initial guess is far from the optimal solution x*,
which is typically the case in early iterations.
However, as it approaches the minimum, the updates

Gradient Descant algorithm

1. Initialization: initialize x,. Determine g, = VF( x,)
Set dy =— g

2. fork = 1,2,... until convergence do

3. set stepsizeay, > 0 satisfying the Wolfe line search
conditions (3)(4).

4. Compute x4 by (2)

5. gis1 = VF(Xke1) ,dks1 = ki1

tend to zigzag, which slows convergence and makes
the method inefficient [3].

TABLE. . ALGORITHM 1

Although GD is straightforward and requires minimal
memory, it often converges slowly and becomes
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inefficient as it approaches the optimal solution due to
zigzagging. To address these issues, optimization
methods that incorporate second-order information have
been developed. Newton's method uses the Hessian
matrix to improve convergence. However, computing
and inverting the Hessian matrix is computationally
expensive, particularly for high-dimensional data.

Quasi-Newton methods provide a practical alternative.
Instead of computing the Hessian directly, they
approximate it using information from successive
gradient evaluations. These methods, particularly the
BFGS family, offer a balance between convergence
speed and computational efficiency. The current study
investigates the effectiveness of BFGS and its variants
in optimizing nonlinear least squares regression models.
To improve the stability and adaptiveness of the step
size a, techniques such as the Wolfe line search are used
[1,2]:

F (x + agdy) < F(xi) + p aggpdy, 3)
VF(xk + akdk)Tdk > VF(xk)Tdk (4)
where 0 < p <o <1 are constants, x,=

04,04, ...,0,.
In iterative optimization methods, we begin with an
initial point @ and, at each iteration, compute a search
direction dj, and a step size ay, updating the parameters
as:

X1 = X + Qe dy (5)

necessary that F (xp,4) < F (x3).

the objective function F (xj,1)can be approximated by
either a linear or a quadratic model,

1
F (Xp41) = F(x) + g(x)" dy + i Hxdy  (6)
where g(x;) = V F(xy) is the gradient and H(xy)
=P2F(x;,) is the Hessian matrix of F(xy)

A. NEWTON METHOD

The condition VF(x*) = 0, where x* is the minimum
point of the objective function F(x), forms the basis of
Newton’s method, also known as the Newton-Raphson
method—named after Isaac Newton and Joseph Raphson
[3]. This method relies on a second-order Taylor series
approximation (see Theorem 1) to find a local minimum
by iteratively updating the input vector x. The update rule
is defined as:
X1 = X= @ (VPFe ) V() (D

Where:

oV f(xy) is the gradient at iteration k,

o V?F(x,) is the Hessian matrix (second

derivative),

e And ay, is the step size.

Advantages of Newton's Method:
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1. If F(x) is a quadratic function, Newton’s method
converges in a single step, regardless of the initial
starting point.

2. When the initial point x, is sufficiently close to
the minimum, the method exhibits quadratic
convergence—a highly desirable property for
solving least squares problems.

In many optimization frameworks, Newton’s method

is considered a core component for achieving high

convergence rates [4].

Despite its advantages, Newton's method also suffers

from several notable drawbacks:

1. Lack of global convergence: In non-linear least
squares problems, Newton's method may fail to
converge. One key issue is that the computed
search directiond;, = (V2F(x;))™1 V f (x) may
not always be a descent direction, which is
essential for ensuring the cost function decreases.

2. High computational cost: Each iteration requires
evaluating the Hessian matrix and computing its
inverse, both of which are computationally
expensive, especially for high-dimensional data.

3. Singular Hessian issue: If the Hessian is singular
or singular at any point, especially in the
preliminary stages—Newton’s method fails
because it cannot solve the resulting system of
equations.

Due to these limitations, Newton’s method is often
combined with more stable or approximate techniques,
such as quasi-Newton methods, which aim to preserve its
fast convergence without incurring the full computational

cost.

TABLE. II. ALGORITHM 2

Newton algorithm
1. Initialization.initialize x,. Determine g, =
VF(xo), Hy = V2f(xo).set dyg = — Hy "' go.
2. fork = 1,2,.. until convergence do
3. setstepsizea;, > 0 satisfying the Wolfe line search
condijtions (3)(4).
Xpr1 =X + Qdy
5 Gre1 = Vf0ud Hisr = V2f (), diesr =
- Hk+1_lgk+1

>

B. QUASI-NEWTON METHOD
Newton's method is among the most fundamental methods
for dealing with unconstrained optimization problems. A
fundamental result of mathematics is that VF(x*) = 0 is a
necessary condition for optimality. Finding the gradient
function's zero is the goal of Newton's method. The method
is iterative, with each iteration estimating the function
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gradient using a linear approximation around the
k¢p, iteration.

VF (xy + pr) = VF (i) + V?F (x;)px ®

For Newton's method to work effectively, the Hessian matrix.
V2F(x,) must be available. However, computing the
Hessian is often computationally expensive or infeasible for
large-scale problems. This challenge leads to the
development of Quasi-Newton methods, which approximate
the Hessian rather than compute it directly.

The central idea is to estimate the Hessian Hy =~ V?F(x,),
and then define the search direction using this approximation.
The main problem becomes how to update the matrix Hy to
Hyyq1 in a way that captures curvature information from the
function as we move from x,to x4 [5, 6]. These methods
blend the structure of Newton’s method with the
computational efficiency of Gauss-Newton approximations.
In general, Quasi-Newton methods update the solution using
(Equi 7) Where: dy, is the solution to H, d}, = —gx,

ay satisfies Wolfe line search conditions
H,, approximates the true Hessian.

The matrix is updated by: Hy. 1 = Hy + Uy

To maintain symmetry and positive definiteness—key
properties of the true Hessian—Quasi-Newton methods
enforce the secant condition (also called the Quasi-Newton
condition):

VF(x; + ardy) = VF () + V2F (x3) (s — X)) (9)
Define:

Sk = Xg41 — Xk = Wi, Vi = VF(pqq) — VF(xg),
Then the secant condition becomes: y;, = HjSy
Additionally, we ensure the updated Hessian approximation
satisfies: Hyyq8; = Hysj; j = k-1,..,k —n + L

The dy 11 is givenby: Hy 4y 1dk+1 = —Gk+ 1, (10)
or directly using the inverse Hessian approximation
die+1= —Brs1Gr+1 (11)

where B, ,; approximates the inverse Hessian,

Biy1=Hy 1y
Starting from an initial point x,, these methods iteratively
produce x;, , ; until convergence to the optimal solution x*.
Quasi-Newton methods achieve super-linear convergence
near the optimum and are considered robust and efficient for
a wide range of differentiable functions. Several variations
exist for updating the inverse Hessian, including:

e  Symmetric Rank-One (SR1) update [7, 8]

e Rank-Two updates such as the Broyden—Fletcher—

Goldfarb—Shanno (BFGS) method [7-10]

These methods have become some of the most popular and
widely used techniques in numerical optimization due to their
balance of speed and accuracy.

Il. PROBLEM DEFINITION

Regression models are a type of least squares problem,
where the goal is to minimize the cost function. This
minimization yields the optimal weights (parameters 8*) as
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in (2). As previously mentioned, the cost function is
typically optimized using the Gradient Descent method.
However, this method suffers from slow convergence and
instability. Therefore, it is proposed to employ second-order
methods such as Quasi-Newton techniques.

This paper aims to apply the BFGS method and its
variants—including the Memoryless BFGS method [10,
11],the Limited-Memory BFGS method [11-14], the Scaled
BFGS method [9], and the Double Scaled BFGS method
[9]—to the least squares problem exemplified by the
regression model, and to identify the most effective
approach.

The most effective Quasi-Newton update for approximating
the Hessian is the BFGS formula:

T T
Br.1= B + Bysksk” Bx + (}’k}’k ) (12)

SiT By s Yi" sk

This satisfies the secant equation (11) and represents a rank-
two update. Applying the Sherman-Morrison-Woodbury
formula [15] twice yields the update for the inverse Hessian
in the BFGS method. Assuming Hj is the inverse
approximation of the Hessian at iteration k:

T T T T
Hesq= H, _ SkYk” He+HiYisk (1 Vi Hkyk) (SkSk ) (13)

Vil sk ViT sk Vi Sk

A key property of BFGS is that Hy,q remains positive
definite for any k, provided that Hj, is positive definite. If
the inverse Hessian approximation Hj estimates the
curvature of the objective function incorrectly—thus
slowing down the iteration—it tends to correct itself in
subsequent steps. This is one of the self-correcting features
of the BFGS algorithm. The quality of the Wolfe line search
implementation plays a significant role in preserving this
self-correcting behavior. Using the initial step length @ =
1 in the Wolfe line search leads to super-linear
convergence. Due to its numerous advantages, the BFGS
update is widely considered one of the most robust and
effective Quasi-Newton methods [1, 2].

TABLE. III. ALGORITHM 3
symmetric rank two (BFGS)
1. Initialization:

initialize x.

Determine g, = VF( x;)
Hy = V2 F(xy).
Setdy = Hy™* g,
fork = 1,2,... until convergence do

set stepsize a, > 0 conditions (3)(4).
set X1 = Xp + agdy

Setsy = X1 — X aAndYy = Gr+1 — Gk
use (13) to update the inverse Hessian.
Compute search directiondy, . 1 = —Hy 1 19k + 1-

AR WN N

lll. METHODOLOGY
The BFGS method has notable characteristics, as previously
mentioned, such as its self-correcting nature. If the current
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Hessian approximation Hj, is inaccurate, the BFGS method
tends to correct it within a few iterations. It is also one of
the most efficient and accurate methods for solving
minimization problems. However, it requires a large amount
of memory per iteration, making it computationally
expensive with complexity (0(g(n)) = n?). As aresult, it is
primarily suitable for small- to medium-scale problems. To
address high-dimensional problems, modified methods that
reduce memory usage and computational complexity to
0(g(n)) = mnwhere m > n)have been proposed. These
are known as the Memoryless BFGS and Limited-Memory
BFGS (L-BFGS) methods. Additionally, to enhance
performance, a modified version called the Self-Scaling
BFGS has been introduced.

A. MEMORY-LESS BFGS METHOD

Memoryless BFGS eliminates the need to store and
update the approximate Hessian matrix explicitly. Instead,
it computes the search direction directly using past gradients
and step sizes, significantly reducing memory usage and
computational cost.
Assuming Hy =1, the Memoryless BFGS method is
defined by the update:

Hypq1=1- Sk + Vi’ + (1 + ;k:yk) (SkSkT) (14)

Vi sk ! i/ \ViT Sk

The memoryless BFGS and memoryless SR1 methods
differ significantly. The memoryless BFGS method is well-
defined when the step size is chosen using Wolfe line search
conditions, which guarantee (s, -y)"y, # 0 at each
iteration. On the other hand, in the case of the SR1 method,
Wolfe line search does not ensure that (s, — yk)Tyk + 03,
71

B. LIMITED MEMORY BFGS

Limited-memory BFGS (L-BFGS) stores only a limited
number of previous updates to the gradient and position
vectors (typically the most recent m updates), allowing it to
approximate the inverse Hessian efficiently without the
need to handle large matrices. This makes L-BFGS
particularly suitable for large-scale optimization problems.
L-BFGS applies the BFGS update using information from
only the most recent m iterations to update the base matrix
H, multiple times, forming Hj , ;. Its implementation is
identical to that of the standard BFGS method, except that
the inverse Hessian approximation is not formed explicitly.
Instead, it is represented using a limited number of BFGS
updates. This method often yields a fast linear convergence
rate and requires only vector operations, significantly
reducing memory demands.
Equation (13) is derived from:

T T T
SkYk YiSk SkSk
H =(I- H |1 - + 15
et ( " Sk> * < Yi" 5k> <YkT 5k> (15)
T
Let: Vk = (1 — Sk )y Pk = -

Vil sk ViT sk

Then:Hy 1 = [V . Vicmar THicme1 Ve - Viemmaa]

+ Pkomer Vi o Viemer 1Sk-ms1Sk-m+1” Vi - Vieme1]
+...+SkSkT (16)
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This final formula avoids matrix storage and uses only
vector operations, making it suitable for large-scale
optimization problems.

C. SCALED BFGS METHODS

The standard BFGS method may perform poorly on non-
convex minimization problems when using an exact line
search. To enhance its performance, self-scaling BFGS
methods have been introduced. These methods are based on
the concept of scaling the eigenvalue structure of the BFGS
approximation to better match the true Hessian matrix.

The scaled BFGS update formula is:

T T T T
_ SkYk Hi+HypYrSk 1 Vi HiYi [ SkSk

Hyiq1= Hy— - +(—+ - = a7
Yk Sk Yk Yk© Sk Yk' Sk

Here, y, is a positive parameter that must be determined
during the optimization process. This algorithm is simple to
implement, but it is applicable only to small- and medium-
scale unconstrained problems.

IV. RESULT

In this section, we investigate the efficiency of the BFGS
method and its modified variants—Memoryless BFGS
(ML-BFGS) and Limited-memory BFGS (L-BFGS). These
methods are compared to the traditional Gradient Descent
(GD) method and the Newton method. The performance
metric used for comparison is the Mean Squared Error
(MSE).

A. EXPERIMENT 1:

For this experiment, we used the dataset from the Elo
Merchant Category Recommendation competition [16, 17].
Elo is one of the largest payment companies in Brazil. In
this competition, Elo collaborated with various merchants
to offer exclusive deals or discounts to their cardholders.

The key research questions in this context include:

e Do these promotions benefit the merchant or the
customer?

e Do customers find their experiences enjoyable?

e Do merchants observe an increase in repeat
customers?

Given the importance of personalization, the objective of
the dataset is to analyze customer behavior and assess
whether such promotions influence loyalty or recurring
purchases [16].

When the number of iterations is set to 3, it is observed that
Gradient Descent (GD) fails to converge, whercas BFGS
and its modified variants demonstrate greater stability and
faster convergence. As illustrated in Figure 1(a), the cost
function computed by GD remains high, while BFGS and
its variants maintain lower and more stable cost values.
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TABLE. IV. EXPERIMENT 1: Elo Merchant Category

Model score MSR Time
Five iterations
GD 0.533 6.63423 00.189930
BFGS 0.808 2.72375 00.881986
ML_BFGS 0.817 2.60933 01.053210
L_BFGS 0.808 2.72375 01.025684
S_BFGS 0.808 2.72375 01.113555
Ten iterations
GD 0.71 4.03207 00.752
BFGS 0.82 2.72375 01.167
ML_BFGS 0.82 2.5655 02.510
L_BFGS 0.81 2.5614 02.33
S_BFGS 0.81 2.5614 02.54
Twenty iterations
GD 0.805 2.77 01.46
BFGS 0.82 2.54 03.748
ML_BFGS 0.82 2.55 05.16
L_BFGS 0.82 2.54 04.53
S_BFGS 0.82 2.54 04.31
Thirty iterations
GD 0.82 2.60 03.49
BFGS 0.83 2.54 08.00
: En |\ e
o Lo e

o scaled_cost

00 05 1.0 15 20 25 30 35 40
Iterations

a) 5 iter
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Fig 1 EXPERIMENT 1: Elo Merchant Category Recommendation

Increasing the number of iterations to 10 still does not yield
acceptable results for GD. As shown in Figure 1(b), the
cost function from GD remains high and unstable, while
BFGS and its modified methods continue to exhibit
robustness and stability, achieving satisfactory cost values.
At 20 iterations, Figure 1(c) shows that GD begins to
converge, yet the results are still not stable. In contrast,
BFGS-based methods remain consistently effective.

To further explore the iteration threshold at which GD
becomes comparable in stability to BFGS, the number of
iterations increased to 30, as depicted in Figure 1(d). While
all BFGS methods—standard BFGS, Memoryless BFGS
(ML-BFGS), Limited-memory BFGS (L-BFGS), and
Scaled BFGS—produce satisfactory and stable results,
ML-BFGS achieves the lowest Mean Squared Error
(MSE) and demonstrates superior performance.

TABLE. V. Different tolerance

Model score MSR Time
tolerance= 0.001

GD 2.577 36 05.45
BFGS 2.556 11 02.78
ML BFGS 2.563 11 02.87
L BFGS 2.556 11 02.48
S BFGS 2.556 11 02.52
tolerance= 10 * e~

GD 2.566 49 9.79
BFGS 2.54 35 05.35
ML BFGS 2.563 32 07.74
L BFGS 2.54 35 07.44
S BFGS 2.54 36 06.40

30
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The compared models were updated to terminate early when
the cost function falls below a predefined tolerance
threshold (tolerance = 0.001). This modification highlights
the faster convergence of BFGS and its modified methods
in comparison to Gradient Descent (GD). As demonstrated
in Table V and Figure 2, the BFGS-based methods reach the
stopping criterion more quickly, thereby reducing
computational time and demonstrating greater efficiency
than GD.

Cost
»
I

o 2 a 6 s 1 1z 1a
lterations
Fig 2 Final converges.

B. EXPERIMENT 2:
The ‘GreyLivingstone’ notebook was utilized for feature
extraction, and its output was employed to evaluate the
proposed models[18] . The resulting dataset consists of
770 features and 201,917 records. This experiment
represents the second phase of our evaluation and was
conducted using Google Colab with a T4 GPU
environment to ensure efficient processing and execution.

TABLE. VI. EXPERIMENT 2: Th ‘GreyLivingstone’

Model score MSR Time
five iterations
BFGS 0.78 3.09 17.50
ML_BFGS 0.78 3.09 16.48
L_BFGS 0.78 3.09 17.16
S BFGS 0.78 3.09 19.09
Ten iterations
BFGS 0.82 2.52 33.67
ML_BFGS 0.82 2.52 34.5
L_BFGS 0.82 2.52 36.08
S BFGS 0.82 2.52 36.95
Twenty iterations
BFGS 0.82 2.50 01:06.60
ML_BFGS 0.82 2.50 01:05.87
L_BFGS 0.82 2.50 01:12.43
S_BFGS 0.82 2.50 01:12.39
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Fig 3 EXPERIMENT 2: The ‘GreyLivingstone’

We updated the compared models to include an early
stopping criterion, where training halts if the cost
function drops below a specified tolerance value
(tolerance =0.001). This enhancement demonstrates that
the BFGS method and its modified variants achieve
convergence faster than other regression approaches,
with all BFGS-based models successfully converging
within sixteen iterations. This significantly reduces
computational time, as illustrated in Table VII and
Figure 4.

TABLE. VII. Different regressors

Model Train Test MSR Time
accuracy accuracy

BFGS 0.83 0.82 2.50  30.08
ML_BFGS 0.83 0.82 2.50  29.51

Linear 0.83 0.82 2.50 11.35
Regression

Ridge 0.83 0.82 2.50  01.93
Regression

Lasso 0.74 0.73 3.83 0133
Regression
Elastic Net 0.65 0.64 498 01.39

Decision Tree 1.00 0.64 5.08  02:58.97

K-Nearest 0.61 0.37 8.89  00.75

Neural 0.84 0.82 2.50  01:48.72

Network
(MLP)
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—e— GD
—e— BFGS
—e— ML_BFGS

o] 5 10 15 20 25 30 35
Iterations

Fig 4 final converge (ML_BFGS)

V. CONCLUSION

In regression models, Gradient Descent (GD) is a traditional
optimization technique; however, it often suffers from slow
convergence and instability. To address these issues,
second-order methods such as Quasi-Newton algorithms are
utilized. Among them, the BFGS method is known for its
fast convergence on classical problems. Additionally,
several modified versions of BFGS have been developed to
improve performance, particularly in large-scale settings.
These include the Memoryless BFGS (ML-BFGS),
Limited-Memory BFGS (L-BFGS), and Scaled BFGS.
Among these, ML-BFGS demonstrated the best overall
performance, offering a balance of accuracy and efficiency,
and proved to be the fastest in convergence.
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