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ABSTRACT In regression modeling, Gradient Descent (GD) is widely used to update parameters by 
iteratively minimizing a cost function. However, GD often converges slowly and may suffer from instability 
due to its reliance on first-order derivatives only. To improve convergence speed and stability, Newton’s 
method utilizes second-order derivative information, aiming to find the point where the gradient vanishes. 
While Newton’s method offers faster convergence, computing the exact Hessian matrix is often 
computationally expensive or infeasible. 
Quasi-Newton methods overcome this limitation by approximating the Hessian matrix. These methods 
iteratively update an estimate of the Hessian, typically denoted as 𝐻𝐻𝑘𝑘 ≈ 𝛻𝛻2𝑓𝑓(𝑥𝑥𝑘𝑘), to guide the search 
direction. A notable quasi-Newton algorithm is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. 
In this paper, we apply BFGS and its variants—including Memoryless BFGS, Limited-memory BFGS (L-
BFGS), and Scaled BFGS—to nonlinear least squares regression problems. Their performance is compared 
with traditional Gradient Descent and Newton’s method, focusing on convergence behavior and optimization 
efficiency. The results demonstrate the potential advantages of quasi-Newton approaches in practical 
regression scenarios. 
 
INDEX TERMS BFGS method, Gradient Descant, Newton method, Nonlinear least square, Quasi-Newton. 
 
I. INTRODUCTION 

Regression is a foundational technique in machine 
learning used to predict a target variable based on 
linear or nonlinear relationships between independent 
and dependent variables. 

𝒚𝒚� = 𝛉𝛉𝟎𝟎 + 𝛉𝛉𝟏𝟏𝒙𝒙𝟏𝟏 + 𝛉𝛉𝟐𝟐𝒙𝒙𝟐𝟐+. . +𝛉𝛉𝒙𝒙𝒏𝒏 + 𝝐𝝐      (1) 
Where 𝒚𝒚� is the predicted value (dependent variable),  
𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, . . ,𝒙𝒙𝒏𝒏 𝒂𝒂𝒂𝒂𝒂𝒂 independent variables, 𝛉𝛉𝟎𝟎  is the 
intercept (constant value), 𝛉𝛉𝟏𝟏, 𝛉𝛉𝟐𝟐, . . , 𝛉𝛉𝒏𝒏 are  
coefficients for independent variables, and 𝝐𝝐  is the 
error term. 
The performance of a regression model is often 
evaluated using a cost function, with Mean Squared 
Error (MSE) being a common choice: 

MSE =  1
2m
∑ �y� (i) − y(i)�2m−1
1=0              (1) 

To minimize this cost function, Gradient Descent 
(GD) is widely employed. It iteratively updates the 
model parameters by computing the gradient of the 
cost function with respect to each parameter: 
 

𝜃𝜃𝑛𝑛 =  𝜃𝜃𝑛𝑛 − 𝛼𝛼 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑛𝑛

                                  (2) 
Where 𝜶𝜶 is the learning rate (step size). 

GD is popular due to its simple implementation and 
low memory requirements (𝑶𝑶(𝒏𝒏)),  as it only uses 
first-order derivatives. It performs effectively when 
the initial guess is far from the optimal solution 𝒙𝒙∗, 
which is typically the case in early iterations. 
However, as it approaches the minimum, the updates 

tend to zigzag, which slows convergence and makes 
the method inefficient [3]. 

TABLE. I. ALGORITHM 1 
 
Although GD is straightforward and requires minimal 
memory, it often converges slowly and becomes 

Gradient Descant algorithm 
1. Initialization: initialize  𝑥𝑥0. Determine 𝑔𝑔0 = 𝛻𝛻𝛻𝛻( 𝑥𝑥0) 

Set  𝑑𝑑0 = − 𝑔𝑔0  
2. for 𝑘𝑘 =  1, 2, … until convergence do   
3. set stepsize 𝛼𝛼𝑘𝑘 >  0 satisfying the Wolfe line search 

conditions (3)(4). 
4. Compute  𝑥𝑥𝑘𝑘+1 by (2) 
5. 𝑔𝑔𝐾𝐾+1 = 𝛻𝛻𝛻𝛻( 𝑥𝑥𝐾𝐾+1)  , 𝑑𝑑𝐾𝐾+1 =  𝑔𝑔𝐾𝐾+1 
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inefficient as it approaches the optimal solution due to 
zigzagging. To address these issues, optimization 
methods that incorporate second-order information have 
been developed. Newton's method uses the Hessian 
matrix to improve convergence. However, computing 
and inverting the Hessian matrix is computationally 
expensive, particularly for high-dimensional data. 
 
Quasi-Newton methods provide a practical alternative. 
Instead of computing the Hessian directly, they 
approximate it using information from successive 
gradient evaluations. These methods, particularly the 
BFGS family, offer a balance between convergence 
speed and computational efficiency. The current study 
investigates the effectiveness of BFGS and its variants 
in optimizing nonlinear least squares regression models. 
To improve the stability and adaptiveness of the step 
size 𝜶𝜶, techniques such as the Wolfe line search are used 
[1, 2]: 
𝐹𝐹 (𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘) <  𝐹𝐹(𝑥𝑥𝑘𝑘) +  𝜌𝜌 𝛼𝛼𝑘𝑘𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘,             (3) 
   𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘)𝑇𝑇𝑑𝑑𝑘𝑘 > 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘)𝑇𝑇𝑑𝑑𝑘𝑘               (4) 

where 𝟎𝟎 <  𝝆𝝆 <  𝝈𝝈 <  𝟏𝟏  are constants, 𝒙𝒙𝒌𝒌 =
 𝜽𝜽𝟎𝟎,𝜽𝜽𝟏𝟏, … ,𝜽𝜽𝒏𝒏. 
In iterative optimization methods, we begin with an 
initial point  𝜽𝜽𝟎𝟎 and, at each iteration, compute a search 
direction 𝒅𝒅𝒌𝒌 and a step size 𝜶𝜶𝒌𝒌, updating the parameters 
as: 

𝑥𝑥𝑘𝑘+1 =  𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘 𝑑𝑑𝑘𝑘      (5) 
 necessary that 𝑭𝑭 (𝒙𝒙𝒌𝒌+𝟏𝟏) < 𝑭𝑭 (𝒙𝒙𝒌𝒌). 
 
the objective function 𝑭𝑭 (𝒙𝒙𝒌𝒌+𝟏𝟏)can be approximated by 
either a linear or a quadratic model, 
𝑭𝑭 (𝒙𝒙𝒌𝒌+𝟏𝟏) ≈ 𝑭𝑭(𝒙𝒙𝒌𝒌) + 𝒈𝒈(𝒙𝒙𝒌𝒌)𝑻𝑻 𝒅𝒅𝒌𝒌 + 𝟏𝟏

𝟐𝟐
𝒅𝒅𝒌𝒌

𝑻𝑻𝑯𝑯(𝒙𝒙𝒌𝒌)𝒅𝒅𝒌𝒌   (6) 
where  𝒈𝒈(𝒙𝒙𝒌𝒌) =  𝜵𝜵 𝑭𝑭(𝒙𝒙𝒌𝒌)  is the gradient and 𝑯𝑯(𝒙𝒙𝒌𝒌) 
=𝜵𝜵𝟐𝟐𝑭𝑭(𝒙𝒙𝒌𝒌) is the Hessian matrix of 𝑭𝑭(𝒙𝒙𝒌𝒌) 

A. NEWTON METHOD 
 
The condition 𝛻𝛻𝐹𝐹(𝑥𝑥∗)  = 0 , where x∗  is the minimum 
point of the objective function 𝐹𝐹(𝑥𝑥), forms the basis of 
Newton’s method, also known as the Newton-Raphson 
method—named after Isaac Newton and Joseph Raphson 
[3]. This method relies on a second-order Taylor series 
approximation (see Theorem 1) to find a local minimum 
by iteratively updating the input vector 𝑥𝑥. The update rule 
is defined as: 

𝑥𝑥𝑘𝑘+1 =  𝑥𝑥𝑘𝑘– 𝛼𝛼𝑘𝑘 (𝛻𝛻2𝐹𝐹(𝑥𝑥𝑘𝑘))−1 𝛻𝛻 𝑓𝑓 (𝑥𝑥𝑘𝑘)  (7) 
Where: 

• 𝛻𝛻 𝑓𝑓 (𝑥𝑥𝑘𝑘) is the gradient at iteration 𝑘𝑘, 
• 𝛻𝛻2𝐹𝐹(𝑥𝑥𝑘𝑘)  is the Hessian matrix (second 

derivative),  
• And αk, is the step size. 

Advantages of Newton's Method: 

1. If 𝐹𝐹(𝑥𝑥) is a quadratic function, Newton’s method 
converges in a single step, regardless of the initial 
starting point. 

2. When the initial point 𝑥𝑥0 is sufficiently close to 
the minimum, the method exhibits quadratic 
convergence—a highly desirable property for 
solving least squares problems. 

In many optimization frameworks, Newton’s method 
is considered a core component for achieving high 
convergence rates [4]. 
Despite its advantages, Newton's method also suffers 

from several notable drawbacks: 
1. Lack of global convergence: In non-linear least 

squares problems, Newton's method may fail to 
converge. One key issue is that the computed 
search direction𝑑𝑑𝑘𝑘 = (𝛻𝛻2𝐹𝐹(𝑥𝑥𝑘𝑘))−1 𝛻𝛻 𝑓𝑓 (𝑥𝑥𝑘𝑘) may 
not always be a descent direction, which is 
essential for ensuring the cost function decreases. 

2. High computational cost: Each iteration requires 
evaluating the Hessian matrix and computing its 
inverse, both of which are computationally 
expensive, especially for high-dimensional data. 

3. Singular Hessian issue: If the Hessian is singular 
or singular at any point, especially in the 
preliminary stages—Newton’s method fails 
because it cannot solve the resulting system of 
equations. 

Due to these limitations, Newton’s method is often 
combined with more stable or approximate techniques, 
such as quasi-Newton methods, which aim to preserve its 
fast convergence without incurring the full computational 
cost. 

TABLE. II. ALGORITHM 2 

 
 

B. QUASI-NEWTON METHOD 
Newton's method is among the most fundamental methods 
for dealing with unconstrained optimization problems. A 
fundamental result of mathematics is that 𝛻𝛻𝛻𝛻(𝑥𝑥∗) = 0 is a 
necessary condition for optimality. Finding the gradient 
function's zero is the goal of Newton's method. The method 
is iterative, with each iteration estimating the function 

Newton algorithm 
1. 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥0.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑔𝑔0 =

 𝛻𝛻𝛻𝛻(𝑥𝑥0),𝐻𝐻0 = 𝛻𝛻2𝑓𝑓(𝑥𝑥0). 𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑0 =  − 𝐻𝐻0−1𝑔𝑔0. 
2. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 =  1, 2, …  𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑   
3. set stepsize 𝛼𝛼𝑘𝑘 >  0 satisfying the Wolfe line search 

conditions (3)(4). 
4.  𝑥𝑥𝑘𝑘+1  = 𝑥𝑥𝑘𝑘 +  𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘 
5. 𝑔𝑔𝑘𝑘+1 =  𝛻𝛻 𝑓𝑓(𝑥𝑥𝑘𝑘),𝐻𝐻𝑘𝑘+1 = 𝛻𝛻2𝑓𝑓(𝑥𝑥𝑘𝑘),𝑑𝑑𝑘𝑘+1 =

 − 𝐻𝐻𝑘𝑘+1−1𝑔𝑔𝑘𝑘+1 
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gradient using a linear approximation around the 
𝑘𝑘𝑡𝑡ℎ iteration.  

 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘 + 𝑝𝑝𝑘𝑘) ≈ 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘) + 𝛻𝛻2𝐹𝐹(𝑥𝑥𝑘𝑘)𝑝𝑝𝑘𝑘                (8) 

For Newton's method to work effectively, the Hessian matrix.  
𝛻𝛻2𝐹𝐹(𝑥𝑥𝑘𝑘) must be available. However, computing the 
Hessian is often computationally expensive or infeasible for 
large-scale problems. This challenge leads to the 
development of Quasi-Newton methods, which approximate 
the Hessian rather than compute it directly.  
The central idea is to estimate the Hessian Hk ≈ ∇2F(xk), 
and then define the search direction using this approximation. 
The main problem becomes how to update the matrix Hk  to 
Hk+1  in a way that captures curvature information from the 
function as we move from 𝑥𝑥𝑘𝑘to 𝑥𝑥𝑘𝑘+1 [5, 6]. These methods 
blend the structure of Newton’s method with the 
computational efficiency of Gauss-Newton approximations. 
In general, Quasi-Newton methods update the solution using 
(Equi 7) Where: 𝑑𝑑𝑘𝑘 is the solution to 𝐻𝐻𝑘𝑘𝑑𝑑𝑘𝑘 = −𝑔𝑔𝑘𝑘,  
𝛼𝛼𝑘𝑘  satisfies Wolfe line search conditions 
𝐻𝐻𝑘𝑘  approximates the true Hessian. 
The matrix is updated by: 𝐻𝐻𝑘𝑘+1 = 𝐻𝐻𝑘𝑘 + 𝑈𝑈𝑘𝑘 
To maintain symmetry and positive definiteness—key 
properties of the true Hessian—Quasi-Newton methods 
enforce the secant condition (also called the Quasi-Newton 
condition): 
𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘 + α𝑘𝑘𝑑𝑑𝑘𝑘) ≈ 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘) + 𝛻𝛻2𝐹𝐹(𝑥𝑥𝑘𝑘)(𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘)   (9)     
Define: 
𝑠𝑠𝑘𝑘 = 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 =  α𝑘𝑘𝑑𝑑𝑘𝑘,𝑦𝑦𝑘𝑘 =  𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘+1) − 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘),  

Then the secant condition becomes:    𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑠𝑠𝑘𝑘 
Additionally, we ensure the updated Hessian approximation 
satisfies: 𝐻𝐻𝑘𝑘+1𝑠𝑠𝑗𝑗 =  𝐻𝐻𝑘𝑘𝑠𝑠𝑗𝑗 ;  𝑗𝑗 =  𝑘𝑘 –  1, … ,𝑘𝑘 −  𝑛𝑛 +  1. 
The 𝑑𝑑𝑘𝑘 + 1  is given by: 𝐻𝐻𝑘𝑘 + 1𝑑𝑑𝑘𝑘 + 1 =  −𝑔𝑔𝑘𝑘 + 1,     (10) 
or directly using the inverse Hessian approximation 

  𝑑𝑑𝑘𝑘 + 1 =  −𝐵𝐵𝑘𝑘 + 1𝑔𝑔𝑘𝑘 + 1,       (11) 
where 𝐵𝐵𝑘𝑘 + 1 approximates the inverse Hessian, 
𝐵𝐵𝑘𝑘 + 1= 𝐻𝐻𝑘𝑘 + 1

−1 
Starting from an initial point 𝑥𝑥0 , these methods iteratively 
produce 𝑥𝑥𝑘𝑘 + 1 until convergence to the optimal solution 𝑥𝑥∗. 
Quasi-Newton methods achieve super-linear convergence 
near the optimum and are considered robust and efficient for 
a wide range of differentiable functions. Several variations 
exist for updating the inverse Hessian, including: 

• Symmetric Rank-One (SR1) update [7, 8] 
• Rank-Two updates such as the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) method [7-10] 
These methods have become some of the most popular and 
widely used techniques in numerical optimization due to their 
balance of speed and accuracy. 
 
II. PROBLEM DEFINITION  
   Regression models are a type of least squares problem, 
where the goal is to minimize the cost function. This 
minimization yields the optimal weights (parameters 𝜽𝜽∗) as 

in (2). As previously mentioned, the cost function is 
typically optimized using the Gradient Descent method. 
However, this method suffers from slow convergence and 
instability. Therefore, it is proposed to employ second-order 
methods such as Quasi-Newton techniques. 
This paper aims to apply the BFGS method and its 
variants—including the Memoryless BFGS method [10, 
11],the Limited-Memory BFGS method [11-14], the Scaled 
BFGS method [9], and the Double Scaled BFGS method 
[9]—to the least squares problem exemplified by the 
regression model, and to identify the most effective 
approach. 
The most effective Quasi-Newton update for approximating 
the Hessian is the BFGS formula: 

𝑩𝑩𝒌𝒌 + 𝟏𝟏 =  𝑩𝑩𝒌𝒌  + 𝑩𝑩𝒌𝒌𝒔𝒔𝒌𝒌𝒔𝒔𝒌𝒌𝑻𝑻𝑩𝑩𝒌𝒌
𝒔𝒔𝒌𝒌𝑻𝑻𝑩𝑩𝒌𝒌 𝒔𝒔𝒌𝒌

+ �𝒚𝒚𝒌𝒌𝒚𝒚𝒌𝒌
𝑻𝑻

𝒚𝒚𝒌𝒌𝑻𝑻 𝒔𝒔𝒌𝒌
�  (12) 

This satisfies the secant equation (11) and represents a rank-
two update. Applying the Sherman-Morrison-Woodbury 
formula [15] twice yields the update for the inverse Hessian 
in the BFGS method. Assuming 𝑯𝑯𝒌𝒌  is the inverse 
approximation of the Hessian at iteration 𝒌𝒌: 

𝐻𝐻𝑘𝑘 + 1 =  𝐻𝐻𝑘𝑘 −
𝑠𝑠𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇𝐻𝐻𝑘𝑘+𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘𝑠𝑠𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
�1 𝑦𝑦𝑘𝑘𝑇𝑇𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
� � 𝑠𝑠𝑘𝑘𝑠𝑠𝑘𝑘

𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
�      (13) 

A key property of BFGS is that 𝑯𝑯𝒌𝒌+𝟏𝟏  remains positive 
definite for any 𝒌𝒌, provided that 𝑯𝑯𝒌𝒌  is positive definite. If 
the inverse Hessian approximation 𝑯𝑯𝒌𝒌  estimates the 
curvature of the objective function incorrectly—thus 
slowing down the iteration—it tends to correct itself in 
subsequent steps. This is one of the self-correcting features 
of the BFGS algorithm. The quality of the Wolfe line search 
implementation plays a significant role in preserving this 
self-correcting behavior. Using the initial step length 𝜶𝜶 =
 𝟏𝟏  in the Wolfe line search leads to super-linear 
convergence. Due to its numerous advantages, the BFGS 
update is widely considered one of the most robust and 
effective Quasi-Newton methods [1, 2]. 
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  symmetric rank two (BFGS) 
1. Initialization: 

initialize  𝑥𝑥0. 
 Determine 𝑔𝑔0 = 𝛻𝛻𝛻𝛻( 𝑥𝑥0)  
𝐻𝐻0 = 𝛻𝛻2 𝐹𝐹(𝑥𝑥0).   
Set 𝑑𝑑0 = 𝐻𝐻0−1 𝑔𝑔0  

1. for 𝑘𝑘 =  1, 2, … until convergence do   
2.  set stepsize 𝛼𝛼𝑘𝑘 >  0 conditions (3)(4). 
3.   set  𝑥𝑥𝑘𝑘+1  = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘 
4.   set 𝑠𝑠𝑘𝑘 = 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 and 𝑦𝑦𝑘𝑘 = 𝑔𝑔𝑘𝑘+1 − 𝑔𝑔𝑘𝑘,  
5.  use (13) to update the inverse Hessian. 
6.  Compute search direction 𝑑𝑑𝑘𝑘 + 1 = −𝐻𝐻𝑘𝑘 + 1𝑔𝑔𝑘𝑘 + 1. 

 
 

III. METHODOLOGY 
The BFGS method has notable characteristics, as previously 
mentioned, such as its self-correcting nature. If the current 
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Hessian approximation 𝑯𝑯𝒌𝒌  is inaccurate, the BFGS method 
tends to correct it within a few iterations. It is also one of 
the most efficient and accurate methods for solving 
minimization problems. However, it requires a large amount 
of memory per iteration, making it computationally 
expensive with complexity (𝑶𝑶(𝒈𝒈(𝒏𝒏)) = 𝒏𝒏𝟐𝟐). As a result, it is 
primarily suitable for small- to medium-scale problems. To 
address high-dimensional problems, modified methods that 
reduce memory usage and computational complexity to 
𝑶𝑶(𝒈𝒈(𝒏𝒏)) =  𝒎𝒎𝒎𝒎 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒎𝒎 >  𝒏𝒏)have been proposed. These 
are known as the Memoryless BFGS and Limited-Memory 
BFGS (L-BFGS) methods. Additionally, to enhance 
performance, a modified version called the Self-Scaling 
BFGS has been introduced. 
 

A. MEMORY-LESS BFGS METHOD 
    Memoryless BFGS eliminates the need to store and 
update the approximate Hessian matrix explicitly. Instead, 
it computes the search direction directly using past gradients 
and step sizes, significantly reducing memory usage and 
computational cost.  
Assuming 𝑯𝑯𝒌𝒌 = 𝑰𝑰 , the Memoryless BFGS method is 
defined by the update: 

   𝐻𝐻𝑘𝑘 + 1 =  𝐼𝐼 − 𝑠𝑠𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇+𝑦𝑦𝑘𝑘𝑠𝑠𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
+ �1 + 𝑦𝑦𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
� � 𝑠𝑠𝑘𝑘𝑠𝑠𝑘𝑘

𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
�      (14) 

The memoryless BFGS and memoryless SR1 methods 
differ significantly. The memoryless BFGS method is well-
defined when the step size is chosen using Wolfe line search 
conditions, which guarantee (𝒔𝒔𝒌𝒌 − 𝒚𝒚𝒌𝒌)

𝑻𝑻𝒚𝒚𝒌𝒌 ≠ 𝟎𝟎 at each 
iteration. On the other hand, in the case of the SR1 method, 
Wolfe line search does not ensure that (𝒔𝒔𝒌𝒌 − 𝒚𝒚𝒌𝒌)

𝑻𝑻𝒚𝒚𝒌𝒌 ≠ 𝟎𝟎 [3, 
7]. 
 

B. LIMITED MEMORY BFGS 
   Limited-memory BFGS (L-BFGS) stores only a limited 
number of previous updates to the gradient and position 
vectors (typically the most recent m updates), allowing it to 
approximate the inverse Hessian efficiently without the 
need to handle large matrices. This makes L-BFGS 
particularly suitable for large-scale optimization problems. 
L-BFGS applies the BFGS update using information from 
only the most recent 𝑚𝑚 iterations to update the base matrix 
𝐻𝐻0 multiple times, forming 𝐻𝐻𝑘𝑘 + 1. Its implementation is 
identical to that of the standard BFGS method, except that 
the inverse Hessian approximation is not formed explicitly. 
Instead, it is represented using a limited number of BFGS 
updates. This method often yields a fast linear convergence 
rate and requires only vector operations, significantly 
reducing memory demands.  
Equation (13) is derived from: 

𝐻𝐻𝑘𝑘 + 1 = �𝐼𝐼 −
𝑠𝑠𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
�𝐻𝐻𝑘𝑘 �𝐼𝐼 −

𝑦𝑦𝑘𝑘𝑠𝑠𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
� + �

𝑠𝑠𝑘𝑘𝑠𝑠𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
�           (15) 

Let:  𝑉𝑉𝑘𝑘 =  �𝐼𝐼 − 𝑠𝑠𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
�,  𝑝𝑝𝑘𝑘 = 1

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
 

 
Then:𝐻𝐻𝑘𝑘 + 1 = [𝑉𝑉𝑘𝑘

𝑇𝑇 …𝑉𝑉𝑘𝑘−𝑚𝑚+1
𝑇𝑇]𝐻𝐻𝑘𝑘−𝑚𝑚+1[𝑉𝑉𝑘𝑘 …𝑉𝑉𝑘𝑘−𝑚𝑚+1] 

 + 𝑝𝑝𝑘𝑘−𝑚𝑚+1  [𝑉𝑉𝑘𝑘
𝑇𝑇 …𝑉𝑉𝑘𝑘−𝑚𝑚+1

𝑇𝑇]𝑠𝑠𝑘𝑘−𝑚𝑚+1𝑠𝑠𝑘𝑘−𝑚𝑚+1
𝑇𝑇 [𝑉𝑉𝑘𝑘 …𝑉𝑉𝑘𝑘−𝑚𝑚+1] 

          +. . . +𝑠𝑠𝑘𝑘𝑠𝑠𝑘𝑘𝑇𝑇          (16) 

This final formula avoids matrix storage and uses only 
vector operations, making it suitable for large-scale 
optimization problems. 

C. SCALED BFGS METHODS 
The standard BFGS method may perform poorly on non-
convex minimization problems when using an exact line 
search. To enhance its performance, self-scaling BFGS 
methods have been introduced. These methods are based on 
the concept of scaling the eigenvalue structure of the BFGS 
approximation to better match the true Hessian matrix. 
The scaled BFGS update formula is: 

 𝐻𝐻𝑘𝑘 + 1 =  𝐻𝐻𝑘𝑘 −
𝑠𝑠𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇𝐻𝐻𝑘𝑘+𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘𝑠𝑠𝑘𝑘𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
+ � 1

𝛾𝛾𝑘𝑘
+ 𝑦𝑦𝑘𝑘𝑇𝑇𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
� � 𝑠𝑠𝑘𝑘𝑠𝑠𝑘𝑘

𝑇𝑇

𝑦𝑦𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘
�    (17) 

Here, 𝛾𝛾𝑘𝑘  is a positive parameter that must be determined 
during the optimization process. This algorithm is simple to 
implement, but it is applicable only to small- and medium-
scale unconstrained problems. 
 
IV. RESULT  

In this section, we investigate the efficiency of the BFGS 
method and its modified variants—Memoryless BFGS 
(ML-BFGS) and Limited-memory BFGS (L-BFGS). These 
methods are compared to the traditional Gradient Descent 
(GD) method and the Newton method. The performance 
metric used for comparison is the Mean Squared Error 
(MSE). 
 
A. EXPERIMENT 1: 
For this experiment, we used the dataset from the Elo 

Merchant Category Recommendation competition [16, 17]. 
Elo is one of the largest payment companies in Brazil. In 
this competition, Elo collaborated with various merchants 
to offer exclusive deals or discounts to their cardholders. 

 

The key research questions in this context include: 
• Do these promotions benefit the merchant or the 

customer? 
• Do customers find their experiences enjoyable? 
• Do merchants observe an increase in repeat 

customers? 
 

Given the importance of personalization, the objective of 
the dataset is to analyze customer behavior and assess 
whether such promotions influence loyalty or recurring 
purchases [16]. 
When the number of iterations is set to 5, it is observed that 
Gradient Descent (GD) fails to converge, whereas BFGS 
and its modified variants demonstrate greater stability and 
faster convergence. As illustrated in Figure 1(a), the cost 
function computed by GD remains high, while BFGS and 
its variants maintain lower and more stable cost values. 
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TABLE. IV. EXPERIMENT 1: Elo Merchant Category  

 

 

 

a) 5 iter a) 5 iter 

  

a) 5 iter a) 5 iter 
Fig 1 EXPERIMENT 1: Elo Merchant Category Recommendation  

 
 
Increasing the number of iterations to 10 still does not yield 
acceptable results for GD. As shown in Figure 1(b), the 
cost function from GD remains high and unstable, while 
BFGS and its modified methods continue to exhibit 
robustness and stability, achieving satisfactory cost values. 
At 20 iterations, Figure 1(c) shows that GD begins to 
converge, yet the results are still not stable. In contrast, 
BFGS-based methods remain consistently effective. 
To further explore the iteration threshold at which GD 
becomes comparable in stability to BFGS, the number of 
iterations increased to 30, as depicted in Figure 1(d). While 
all BFGS methods—standard BFGS, Memoryless BFGS 
(ML-BFGS), Limited-memory BFGS (L-BFGS), and 
Scaled BFGS—produce satisfactory and stable results, 
ML-BFGS achieves the lowest Mean Squared Error 
(MSE) and demonstrates superior performance. 
 

TABLE. V. Different tolerance 

 

Model score MSR Time 
Five iterations  

GD 0.533 6.63423 00.189930 
BFGS 0.808 2.72375 00.881986 

ML_BFGS 0.817 2.60933 01.053210 
L_BFGS 0.808 2.72375 01.025684 
S_BFGS 0.808 2.72375 01.113555 

Ten iterations  
GD 0.71 4.03207 00.752 

BFGS 0.82 2.72375 01.167 
ML_BFGS 0.82 2.5655 02.510 
L_BFGS 0.81 2.5614 02.33 
S_BFGS 0.81 2.5614 02.54 

Twenty iterations 
GD 0.805 2.77 01.46 

BFGS 0.82 2.54 03.748 
ML_BFGS 0.82 2.55 05.16 
L_BFGS 0.82 2.54 04.53 
S_BFGS 0.82 2.54 04.31 

Thirty iterations 
GD 0.82 2.60 03.49 

BFGS 0.83 2.54 08.00 

Model score MSR Time 
tolerance= 0.001 
GD 2.577 36 05.45 
BFGS 2.556 11 02.78 
ML_BFGS 2.563 11 02.87 
L_BFGS 2.556 11 02.48 
S_BFGS 2.556 11 02.52 
tolerance= 𝟏𝟏𝟏𝟏 ∗ 𝒆𝒆−𝟓𝟓 
GD 2.566 49 9.79 
BFGS 2.54 35 05.35 
ML_BFGS 2.563 32 07.74 
L_BFGS 2.54 35 07.44 
S_BFGS 2.54 36 06.40 
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The compared models were updated to terminate early when 
the cost function falls below a predefined tolerance 
threshold (tolerance = 0.001). This modification highlights 
the faster convergence of BFGS and its modified methods 
in comparison to Gradient Descent (GD). As demonstrated 
in Table V and Figure 2, the BFGS-based methods reach the 
stopping criterion more quickly, thereby reducing 
computational time and demonstrating greater efficiency 
than GD. 

Fig 2  Final converges.  
 
 
 

B. EXPERIMENT 2: 
The ‘GreyLivingstone’ notebook was utilized for feature 
extraction, and its output was employed to evaluate the 
proposed models[18] . The resulting dataset consists of 
770 features and 201,917 records. This experiment 
represents the second phase of our evaluation and was 
conducted using Google Colab with a T4 GPU 
environment to ensure efficient processing and execution. 

 
TABLE. VI. EXPERIMENT 2: Th ‘GreyLivingstone’ 

 
 

  
a) Five iter b) Ten iter 
Fig 3 EXPERIMENT 2: The ‘GreyLivingstone’ 

 
 
We updated the compared models to include an early 

stopping criterion, where training halts if the cost 
function drops below a specified tolerance value 
(tolerance = 0.001). This enhancement demonstrates that 
the BFGS method and its modified variants achieve 
convergence faster than other regression approaches, 
with all BFGS-based models successfully converging 
within sixteen iterations. This significantly reduces 
computational time, as illustrated in Table VII and 
Figure 4. 
 
 
 

 
TABLE. VII. Different regressors 

 
 

Model score MSR Time 
five iterations  

BFGS 0.78 3.09 17.50 
ML_BFGS 0.78 3.09 16.48 
L_BFGS 0.78 3.09 17.16 
S_BFGS 0.78 3.09 19.09 

Ten iterations  
BFGS 0.82 2.52 33.67 

ML_BFGS 0.82 2.52 34.5 
L_BFGS 0.82 2.52 36.08 
S_BFGS 0.82 2.52 36.95 

Twenty iterations 
BFGS 0.82 2.50 01:06.60 

ML_BFGS 0.82 2.50 01:05.87 
L_BFGS 0.82 2.50 01:12.43 
S_BFGS 0.82 2.50 01:12.39 

Model Train  
accuracy 

Test 
accuracy 

MSR Time 

BFGS 0.83 0.82 2.50 30.08 
ML_BFGS 0.83 0.82 2.50 29.51 

Linear 
Regression 

0.83 0.82 2.50 11.35 

Ridge 
Regression  

0.83 0.82 2.50 01.93 

Lasso 
Regression 

0.74 0.73 3.83 01.33 

Elastic Net  0.65 0.64 4.98 01.39 
Decision Tree   1.00 0.64 5.08 02:58.97 

K-Nearest  0.61 0.37 8.89 00.75 
Neural 

Network 
(MLP) 

0.84 0.82 2.50 01:48.72 
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Fig 4 final converge (ML_BFGS) 

 
 

V. CONCLUSION 
 

In regression models, Gradient Descent (GD) is a traditional 
optimization technique; however, it often suffers from slow 
convergence and instability. To address these issues, 
second-order methods such as Quasi-Newton algorithms are 
utilized. Among them, the BFGS method is known for its 
fast convergence on classical problems. Additionally, 
several modified versions of BFGS have been developed to 
improve performance, particularly in large-scale settings. 
These include the Memoryless BFGS (ML-BFGS), 
Limited-Memory BFGS (L-BFGS), and Scaled BFGS. 
Among these, ML-BFGS demonstrated the best overall 
performance, offering a balance of accuracy and efficiency, 
and proved to be the fastest in convergence. 
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