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ABSTRACT Lung cancer continues to be the leading cause of cancer-related deaths worldwide, with nearly 2
million new cases and 1.76 million deaths each year. Late diagnosis plays a major role in poor outcomes, making early
detection critical to improving survival rates. Advances in computer science, especially in data mining, machine
learning, and artificial intelligence (Al), present new opportunities to transform lung cancer research by enabling more
accurate and timely diagnoses. This study reviews a range of computational models used in lung cancer detection and
diagnosis, with particular emphasis on image analysis and predictive analytics. Methods such as convolutional neural
networks (CNNs), attention mechanisms, and transformers have been utilized to improve the accuracy of lung nodule
segmentation, classification, and malignancy prediction. This work investigates the application of Al-driven models
for evaluating extensive datasets derived from CT scans, along with enhancements in diagnostic consistency and
accuracy relative to human radiologists. The discussion addresses the challenges of data integrity, model openness,
and ethical considerations in integrating Al into therapeutic settings. This review provides an overview of the role of
computer science in advancing lung cancer research, highlighting the possibilities for technological innovation.
Interdisciplinary collaboration is essential for developing robust, intelligible, and scalable Al models that facilitate

early diagnosis, enhance patient care, and seamlessly integrate into healthcare workflows.

INDEX TERMS Computed tomography, Deep learning, Lung nodule detection, Lung nodule segmentation

. INTRODUCTION

Lung cancer arises in the lungs, which are the initial organs
for respiration. It is the primary cause of cancer-related
deaths worldwide. Lung cancer is categorized into two types:
small-cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC). Small cell lung cancer (SCLC) comprises
little neoplastic cells observable by microscopy. Conversely,
with SCLC, the cancer cells exhibit more proliferation.
Typically, small cell lung cancer (SCLC) advances more
rapidly than non-small cell lung cancer (NSCLC). NSCLC
constitutes the predominant form of the disease. It occurs
when atypical cells in the lungs proliferate uncontrollably,
resulting in a tumor or cancer that originates in the lungs, the
organs essential for respiration, which can disrupt normal
lung function. Lung cancer is primarily attributed to
smoking; however, it may also result from many
environmental factors, including air pollution and exposure
to radon gas. Tobacco consumption is the principal cause of
lung cancer, responsible for more than 80% of all cases [1].
Prevalent dangers encompass exposure to air pollution,
secondhand smoke, radon gas, and particular chemicals and
substances found in certain occupational environments. The
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World Health Organization estimates that lung cancer will
cause approximately 1.8 million deaths worldwide in 2020,
representing nearly 18% of all cancer-related mortality, as
illustrated in Figure 1 [2]. In 2019, 324,949 patients in Egypt
received state-funded treatment for malignant neoplasms [3].
According to December 2020 estimates from the Global
Cancer Observatory (GLOBOCAN), the most prevalent
cancers in Egypt, with a 5-year prevalence across all age
groups, include breast, lung, colorectal, prostate, stomach,
liver, and cervical cancer, totaling 8,879,843 cases for all
cancers, as depicted in Figure 2 [4].
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Figure 1: Statistics for cancers on the globe [2]
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Figure 2: Statistics prevalent cancers in Egypt [4]

The primary objective is currently to identify and predict
cancer to initiate treatment promptly [S]. Screening and
incidental findings represent the two primary approaches for
identifying lung cancer. Like breast cancer screening, the
main method for identifying lung cancer should involve
screening [6]. Nonetheless, the majority of countries,
including the UK, do not have a screening program, resulting
in most cases being identified incidentally. Lung nodules are
often identified incidentally during the evaluation of other
organs. Nodules may be identified during a computerized
tomography (CT) scan of the heart or liver. The primary
challenge is the insufficient skills of radiologists in
differentiating between benign and malignant nodules [7].
Patients should be referred to a pulmonologist for the
administration of tests aimed at detecting malignant cells and
excluding other medical conditions. Clinicians order a lung
X-ray to identify signs of tumors, scarring, or fluid

Il. RELATED WORK

The early detection of lung cancer relies heavily on the
identification, segmentation, and classification of lung
nodules where great advancements have been seen with the
use of Deep learning approaches. Over the past few years,
several innovative strategies have emerged to pay attention
to the performance of these tasks, built on more
sophisticated neural network structures, attention models,
and multi-scale feature extraction mechanisms. In this
portion, the authors will mention some of the most
advanced technologies that allow conducting lung nodule
analysis in CT images.

In this review of the related literature, concepts of the key
architectural developments and application of dataset
goodness of fit which have progressed lung nodule analysis
have been presented, forming a basis to appreciate the
current standing of the field and its possible remaining
challenges.

This review of the related literature presents concepts of the
key architectural developments and application of dataset
goodness of fit that have progressed lung nodule analysis,
forming a basis for appreciating the field's current standing
and possible remaining challenges.
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accumulation, as these may suggest the presence of a
suspicious lump or nodule [8]. CT scans can identify even
minor lung abnormalities that may be overlooked by X-rays.
A biopsy can be performed using bronchoscopy, among
other methods. The physician evaluates abnormal lung areas
by introducing a lighted instrument through the patient's
oesophagus and into the lungs. Mediastinoscopy is a
procedure that acquires lymph node tissue samples by
inserting surgical instruments through an incision at the base
of the neck and behind the sternum. A needle biopsy is a
procedure in which a physician inserts a needle into lung
tissue via the chest wall, utilizing X-ray or CT imaging to
identify abnormal cells. An alternative approach involves
obtaining a biopsy sample from lymph nodes or other
metastatic locations of the malignancy, including the liver
[9]. The application of three-dimensional visualization
diagnostics in lung cancer detection improves the capacity of
radiologists and oncologists to comprehend the spatial
distribution and characteristics of lung lesions. This
facilitates accurate diagnosis, treatment planning, and
continuous monitoring of lung cancer patients, potentially
leading to enhanced patient outcomes over time [10]. The use
of three-dimensional visualization diagnostics in lung cancer
detection enables radiologists and oncologists to gain a
thorough understanding of the spatial distribution and
characteristics of lung lesions. This enables accurate
diagnosis, treatment planning, and monitoring of lung cancer
patients, leading to improved patient outcomes. This is
accomplished by applying machine learning techniques to
large datasets of healthcare images.

Liu et al. [11] developed a data-driven method called the
cascaded dual-pathway residual network (CDP-ResNet),
where the ResNet architecture is modified with the goal of
improving lung nodule segmentation in CT images.
Thereafter, this model determines the probability associated
with a voxel being a part of the nodule and demonstrates a
3D rendering of the nodule segmentation result. The lung
image database consortium (LIDC) dataset providing 986
annotated nodules was the data-set that this method was
applied on four times and evaluated by four radiologists.
The results show that the effectiveness of the model CDP-
ResNet is more than the assessment of four different
radiologists. The Dice similarit coefficient (DSC) on the
average between CDP-ResNet and each radiologist is 82.69
percent which is higher than the average variability
between radiologists on the LIDC dataset which is 82.66
percent [11].

Liu et al. [12] implemented the context attention network
CA-Net, which however is able to extract both context
features and nodule and fuse them in the processes of
benignity/malignancy.” For the purpose of contextual
feature(s) that may be associated with the nodule to be
effective, an attention mechanism that incorporates
nodule(s) is used as a cue. Furthermore, it is possible that
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the effects of contextual features on classification differ for
different nodules. The data science bowl 2017 (DSB) is a
dataset for lung cancer prediction worked for the purposes
of test and evaluation. CA-Net is reported to have an
accuracy of 83.79% [12].

Mei et al. [13] introduced the U-NET architecture to Mask
R-CNN for the multi-class segmentation of nuclei in
histopathology images for breast cancer detection. The
RPN networks predict region proposals for image
components that may contain the nodule of interest. The
lung nodule analysis (LUNA) challenge is evaluated using
the publicly available LUNA16 Dataset formed part of the
ISBI 2016 competition. It is reported that Mask R-CNN
gives a sensitivity of 88.1% [13].

Cai et al. [14] came up with a system that uses artificial
intelligence in imaging for the lungs, naming it ALIAS
which stands for Artificial Intelligence Lung Imaging
Analysis System, which includes networks for the detection
and segmentation of lung nodules. The three-dimensional
cascade FPN of the rectified linear unit is applied for the
identification of nodules. In the case of nodule based
analysis, histograms of hounsfield units (Hus) and radionics
features are being used in the extraction. These features
enable the evaluation of the differences that malignant and
benign nodules sized differently possess. The images used
during the ALIAS were tested and evaluated on images
acquired from collaborating institutes, based on the
established Institutional review board protocols, and the
particular material transfer agreements. This assessment
covers a whole of 8540 pulmonary CT images obtained
from 7716 patients. There were 138 malignant (positive)
nodules and 91 benign (negative) nodules in the testing set,
and the accuracy was therefore set at 83.8% [14].

In the study by Chen et al. [15], a slice-aware network
(SANet) was deployed towards the detection of lung
nodules. This network utilizes a combines a slice-grouped
non-local (SGNL) module with U-net like structure
ResBlock to produce the nodule candidate generation. The
dataset PN9 was used to evaluate and validate the
performance of SANet. PN9 consists of 40439 annotated
thoracic nodules and 8798 CT scans of nodules.

Results of the analysis demonstrate that SANet reaches a
precision and recall of 35.92% and 70.20%, which indicates
that the accuracy stands at 87% [15].

Mkindu et al. [16] came up with a method for computer
aided detection of CAD involving a 3D Vision transformer
multi-scale (MSVIT). One of the architecture possesses a
Local-global transformer back block, the local transformer
stage of this architecture first processes each scale patch
separately and integrates when they get to the global
transformer level in order to fuse multi-scale features. The
proposed CAD scheme was validated using 888 CT images
extracted from LUNA16 dataset, a publicly available
database. Trained and tested using 3D-MSVIiT algorithm
Achieved accuracy rate of 91.1% [16].
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Zhang and Zhang [17] located a 3D selective kernel residual
network SK-ResNet which is based on selective kernel
network and three-dimensional residual network. A 3D RPN
employing SK-ResNet has been proposed for lung nodule
recognition and a multi-scale feature fusion network for
nodule classification has been developed. The validity of the
method has been performed and evaluated on LUNAIG,
publicly available dataset. For the SK-ResNet, the accuracy
of 91.75% was attained [17].

Lavika and Satyansh [18] proposed a hybrid deep learning
approach combining a modified YOLOV3 architecture with
the Biogeography-Based Optimization (BBO) and
Exponential Elitism (EE) optimizer for lung cancer detection.
This model leverages the efficiency of YOLOV3 for real-time
object detection, while the BBO/EE optimizer fine-tunes the
model's hyperparameters to enhance detection accuracy and
computational performance. The method was evaluated on
the publicly available LUNAI16 dataset, achieving an
impressive detection accuracy and sensitivity of 93.5%,
demonstrating its effectiveness in identifying and classifying
lung nodules in CT scan images [18].

Z. UrRehman et al. [19] proposed an effective deep
convolutional neural network (CNN) for lung nodule
detection that integrates dual attention mechanisms to
enhance feature extraction and improve the detection of
small and subtle lung nodules. Their model leverages both
spatial and channel-wise attention to refine feature maps,
significantly boosting the accuracy of the network in
detecting lung nodules in CT scan images. Evaluated on the
LUNAL16 dataset, the model achieved a sensitivity of 92.7%
and a specificity of 89.5%, demonstrating its robustness in
distinguishing between malignant and benign nodules [19].
Brocki and Chung [20] proposed an innovative approach that
combines radiomics and tumor biomarkers with interpretable
machine learning models for cancer diagnosis. Their model
integrates advanced machine learning techniques to analyze
radiomics data, improving both the accuracy and
interpretability of cancer detection systems. By using tumor
biomarkers in conjunction with radiomic features, the model
showed promising results in enhancing detection
performance across various cancer types. The method
demonstrated its potential in clinical settings by improving
the accuracy of diagnoses while maintaining model
transparency, which is crucial for clinical decision-making.
Their work highlights the importance of integrating domain-
specific features for improved cancer detection and
classification [20].

In addition, Brocki and Chung [21] introduced ConRad, an
open-source framework designed to integrate radiomics and
tumor biomarkers into machine learning models. The
framework, available on GitHub, provides a versatile tool for
researchers and clinicians, allowing for more personalized
and accurate cancer diagnostic models. This tool has the
potential to significantly advance research by enabling easy
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access to a robust platform for integrating clinical data and
machine learning [21].

Xie et al. [22] introduced a novel approach to the challenging
task of automated pulmonary nodule detection in CT images.
The primary objective of their work is to assist the CT
reading process by quickly identifying lung nodules. They
proposed a two-stage methodology: first, nodule candidate
detection, and then false positive reduction. Their detection
framework is built on a modified version of Faster Region-
based CNN (Faster R-CNN), which includes two region
proposal networks and a deconvolutional layer for detecting
nodule candidates. Three models were trained for different
slice types to incorporate 3D lung information, with the
results later fused. To reduce false positives, the authors
developed a boosting 2D CNN architecture, sequentially
training three models to handle increasingly complex
mimics. Misclassified samples were retrained to enhance
sensitivity. Evaluating their model on the LUNA16 dataset,
they achieved a sensitivity of 86.42% for detecting nodule
candidates and sensitivities of 73.40% and 74.40% at 1/8 and
1/4 false positives per scan, respectively, for false positive
reduction [22].

Sun et al. [23] addressed the issue of low accuracy in
traditional lung cancer detection methods, particularly in
real-world diagnostic environments. To overcome this
limitation, they proposed the use of the Swin Transformer
model for both lung cancer classification and segmentation
tasks. Their approach introduces a novel visual converter that
produces hierarchical feature representations with linear
computational complexity relative to the input image size.
The LUNA16 and MSD datasets were used for segmentation
tasks, comparing the Swin Transformer’s performance with
other models like Vision Transformer (ViT), ResNet-101,
and Data-Efficient Image Transformers (DeiT-S). The results
revealed that the pre-trained Swin-B model achieved a top-1
accuracy of 82.26% in classification tasks, outperforming
ViT by 2.53%. In segmentation tasks, the Swin-S model
showed a mean Intersection over Union (mloU) of 47.93%,
outperforming other methods and demonstrating the model’s
superior performance [23].

Agnes et al. [24] tackled the challenge of manually
examining small nodules in CT scans, a time-consuming task
hindered by the limitations of human vision. To address this,
they introduced a deep learning-based computer-aided
diagnosis (CAD) framework for faster and more accurate
lung cancer diagnosis. The authors employed a dilated
SegNet model for lung segmentation from chest CT images,
alongside a custom CNN model with batch normalization to
identify true nodules. The performance of the segmentation
model was evaluated using the Dice coefficient, while
sensitivity was used to assess the nodule classifier. The CNN
model's discriminative power was further validated using
principal component analysis. Experimental results showed
that the dilated SegNet model achieved a Dice coefficient of
89.00 + 23.00%, and the custom CNN model achieved a
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sensitivity of 94.80% for nodule classification. These models
excelled in both lung segmentation and 2D nodule patch
classification within the CAD system for CT-based lung
cancer diagnosis [24].

Yuan et al. [25] proposed a novel method for early lung
cancer diagnosis and timely treatment through the detection
of malignant nodules in chest CT scans. Their method
combines structured radiological data with unstructured CT
patch data to distinguish between benign and malignant
nodules. The multi-modal fusion multi-branch classification
network they developed utilizes a multi-branch fusion-based
effective attention mechanism for 3D CT patch data. It
incorporates a 3D ECA-ResNet, inspired by ECA-Net, to
dynamically adjust features. Tested on the LUNA16 and
LIDC-IDRI datasets, the network achieved an accuracy of
94.89%, sensitivity of 94.91%, and F1-score of 94.65%, with
a low false positive rate of 5.55% [25].

Hassan Mkindu et al. [26] introduced a computer-aided
diagnosis (CAD) system for lung nodule prediction based on
a 3D multi-scale vision transformer (3D-MSViT). The goal
was to enhance the prediction efficiency of lung nodules
from 3D CT images by improving multi-scale feature
extraction. The 3D-MSVIT architecture uses a local-global
transformer block structure, where the local transformer stage
processes each scale patch individually before merging
multi-scale features at the global transformer level. Unlike
traditional methods, this approach relies solely on the
attention mechanism, reducing the network's parameters by
eliminating the use of CNNs. Evaluating the model on the
LUNAI16 database, they achieved the highest sensitivity of
97.81% and competition performance metrics of 91.10%.
While this method was highly effective, it is limited to a
single image modality (CT images) and lacks a stage for
false-positive reduction. The 3D-ViTNet architecture, which
relies on a single-scale vision transformer encoder without
CNNs, was also tested, showing that integrating 3D ResNet
with the attention module significantly improved detection
sensitivity. However, 3DViTNet’s performance was slightly
lower in terms of sensitivity compared to the 3D-MSViT
model, which provided the best results [26].

Tan et al. [27] proposed a deep learning model for
discriminating between tuberculosis (TB) lung nodules and
early lung cancers in CT images. Their model leverages deep
learning techniques to identify subtle differences between the
two conditions, which can often be challenging for
radiologists. The study showed promising results in
improving the accuracy of lung cancer detection by
distinguishing between TB-related nodules and early-stage
lung cancers [27].

National Institute of Allergy and Infectious Diseases [28]
provides an online TB portal for research and resources
related to tuberculosis. This platform supports various
scientific communities by offering valuable tools and
datasets. It serves as a key resource for understanding TB-
related diseases and provides data that can be integrated with
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other health research, including lung cancer detection studies
[28].

Li et al. [29] introduced the concept of time-distance vision
transformers for lung cancer diagnosis using longitudinal CT
images. Their model leverages temporal information to track
nodule growth and detect potential malignancies over time.
By employing vision transformers, the model can analyze the
sequential nature of CT scans, leading to improved accuracy
in lung cancer detection and diagnosis [29].

Li [30] developed the code for the Time Distance
Transformer, which can be accessed via GitHub. This open-
source tool provides researchers with a framework for
applying vision transformers to longitudinal CT data,
enabling better modeling of temporal dependencies in lung
cancer detection [30].

Lu et al. [31] proposed a deep learning model that uses chest
radiographs to identify high-risk smokers for lung cancer
screening, utilizing computed tomography (CT) scans. Their
prediction model was developed and validated with clinical
data, showing significant potential in identifying individuals
at high risk for lung cancer, thus improving early detection
rates. The model's effectiveness in identifying high-risk
individuals for lung cancer screening has implications for
targeted interventions and prevention strategies [31].

Jian et al. [32] proposed a dual-branch network, DBPNDNet,
which uses 3D Convolutional Neural Networks (3D-CNN)
for pulmonary nodule detection. Their approach, aimed at
enhancing detection accuracy, utilizes two branches that
independently process different scales of CT images,
improving both sensitivity and specificity for lung cancer
diagnosis. The model achieves promising results in detecting
lung nodules, helping clinicians in the early diagnosis of lung
cancer [32].

Zhao et al. [33] introduced an attentive and adaptive 3D
CNN for automatic pulmonary nodule detection in CT
images. Their model integrates attention mechanisms to
focus on relevant features, significantly enhancing detection
accuracy. Evaluated on a variety of CT scans, their method
demonstrated improvements in the detection of small and
subtle nodules compared to traditional CNN-based
approaches[33].

Ahmadyar et al. [34] developed a hierarchical approach for
pulmonary nodule identification by combining a YOLO
model with a 3D neural network classifier. This framework
efficiently detects and classifies lung nodules in CT images.
The integration of YOLO for initial nodule localization
followed by 3D CNN-based classification significantly
improves the accuracy of nodule detection [34].

Ma et al. [35] introduced TICNet, a transformer-based
network integrated with CNNs for pulmonary nodule
detection. Their model, leveraging the strengths of
transformers in handling long-range dependencies, showed
enhanced performance over traditional CNNs for detecting
lung nodules in CT scans. The fusion of convolutional and
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transformer-based architectures allowed for better handling
of complex CT images [35].

Sweetline et al. [36] proposed a multi-crop CNN approach to
address the challenge of accurately segmenting lung nodules.
Their method uses multiple crop sizes to focus on different
parts of the nodule, improving segmentation accuracy,
particularly for smaller and irregular nodules. This approach
showed improved performance compared to conventional
segmentation methods [36].

Zhang et al. [37] introduced DS-MSFF-Net, a dual-path self-
attention multi-scale feature fusion network for CT image
segmentation. Their model uses self-attention mechanisms to
capture long-range dependencies and multi-scale features,
significantly improving the segmentation accuracy of lung
nodules. The model was evaluated on standard datasets,
showing better performance in terms of both segmentation
accuracy and computational efficiency [37].

Suji et al. [38] explored the use of pretrained encoders for
lung nodule segmentation, utilizing the LIDC-IDRI dataset.
Their approach leverages transfer learning with pretrained
models to enhance the accuracy of nodule segmentation,
achieving promising results and reducing the training time
required for deep learning models [38].

Asiya and Sugitha [39] focused on automatically segmenting
and classifying lung nodules from CT images. They
developed a deep learning-based framework that integrates
segmentation and classification into a unified model,
showing high sensitivity and specificity for classifying lung
nodules, particularly in complex cases [39].

Tang et al. [40] introduced SM-RNet, a scale-aware multi-
attention guided reverse network for pulmonary nodule
segmentation. Their model utilizes attention mechanisms to
guide the segmentation process, helping to improve
performance in detecting both small and large nodules in CT
images. The approach was evaluated on multiple datasets,
demonstrating significant improvements in segmentation
accuracy [40].

Cai et al. [41] proposed MDFN, a multi-level dynamic fusion
network for lung nodule segmentation. Their model
incorporates self-calibrated edge enhancement techniques to
improve the detection of nodule boundaries, achieving high
accuracy in both segmentation and classification tasks. This
model shows promise in improving early diagnosis by
enhancing the delineation of lung nodules [41].

Fu et al. [42] investigated the fusion of 3D lung CT data and
serum biomarkers for diagnosing multiple pathological types
of pulmonary nodules. Their approach combines imaging
data with clinical biomarkers, improving the diagnostic
performance of lung cancer models and aiding in the
classification of benign and malignant nodules [42].

Zhan et al. [43] introduced an uncertainty-aware self-training
framework with consistency regularization for multilabel
classification of common CT signs in lung nodules. Their
approach enhances model robustness and accuracy by
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incorporating uncertainty measures, making it
adaptable to real-world clinical environments [43].
Rahouma et al. [44] proposed an automated 3D CNN
architecture designed for pulmonary nodule classification
using a genetic algorithm. Their approach optimizes the CNN
architecture for better accuracy and efficiency in detecting
pulmonary nodules, achieving improved classification
performance in lung cancer screening [44].

Lin et al. [45] developed a combined model that integrates
deep learning, radiomics, and clinical data to classify lung
nodules in chest CT scans. Their model improves
classification accuracy by combining feature extraction from
both image-based and clinical data, enhancing the
performance of lung cancer diagnosis [45].

Singh [46] proposed a novel algorithm for pulmonary nodule
classification using CNNs on CT scans. Their approach
leverages CNN's feature extraction capabilities to classify
lung nodules into malignant or benign categories, improving
early detection and diagnosis of lung cancer [46].

Rana et al. [47] proposed a 3D visualization method for lung
cancer detection aimed at assisting clinicians in the early
diagnosis of lung cancer. Their method integrates the
MobileNet model to enhance the efficiency of feature
extraction by using depthwise separable convolutions,
making it computationally efficient. A ray-casting volume
rendering approach was used to create 3D pulmonary nodular
models from CT scans. The method achieved a segmentation
accuracy of 93.3% on the LIDC dataset, demonstrating its
potential for enhancing early lung cancer detection through
improved visualization of lung nodules in CT images [47].
Kadhim et al. [48] introduced a computer-aided diagnostic
system for pulmonary nodule detection that evaluates the
efficacy of various system types. They explored different
machine learning approaches to enhance the performance of
nodule detection on CT images. The study found that the
proposed system significantly improved detection accuracy
and was effective in identifying both benign and malignant
lung nodules [48].

Bhatt et al. [49] used the YOLOvV4 deep learning model for
pulmonary nodule detection in CT images. Their approach
achieved high sensitivity and specificity in detecting various
types of nodules, outperforming traditional methods. The
model's ability to quickly detect and classify lung nodules
makes it suitable for real-time clinical applications [49].

De Mesquita et al. [S0] proposed a novel method for lung
nodule detection based on Boolean equations and a vector of
filters technique. This method leverages advanced image
processing techniques to enhance the detection of nodules in
CT scans, improving the accuracy of automated detection
systems [51].

Suzuki et al. [51] developed a modified 3D U-Net deep
learning model for the automated detection of lung nodules
in chest CT images. The model, validated on both the Lung
Image Database Consortium and Japanese datasets, achieved

more
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high accuracy in detecting lung nodules, demonstrating its
potential for clinical use [51].

Karrar et al. [52] presented an automated diagnostic system
for detecting solitary and juxtapleural pulmonary nodules in
CT images. Using machine learning techniques, their system
achieved high detection rates, helping to improve early
diagnosis and assist radiologists in clinical decision-making
[52].

Bhaskar et al. [53] applied image enhancement techniques
combined with deep learning models to improve the
detection and classification of pulmonary lung nodules. Their
approach demonstrated improved detection accuracy,
particularly in complex cases where nodules have irregular
shapes [53].

lll. DISCUSSION

The application of deep learning in the interpretation of
CT images has revolutionized the field of lung cancer
detection. Through the use of sophisticated neural
networks, the accuracy of lung nodule detection,
segmentation, and classification has drastically improved.
In this review, we analyzed several state-of-the-art
approaches ranging from traditional Convolutional Neural
Networks (CNNs) to more advanced Transformer-based
architectures and Attention Mechanisms. Each of these
models brings unique contributions to the task of lung
nodule analysis, and their performance varies based on the
techniques they utilize and the datasets they are trained on.

To facilitate a better understanding, the following diagram
provides a high-level overview of the Al-assisted
diagnostic process.

( )
Image Acquisition

— _/

L

—
Image Proprscessing
~ Acgudaisandorn
- Anggemiomtom
\_ l J
a ™\
Deep Learning Ecalure
Mrach < Repronco r
* Deczaider Sopteration Conuenatioz
\ _/

i)

o
Diagnosis ]

Figure 3:4I-Assisted Diagnosis Workflow

A. Key Contributions and Performance of Different
Approaches

A comparison of various methodologies for lung cancer
detection is presented in Table I, where different models
like CDP-ResNet, CA-Net, Mask R-CNN, and ALIAS are
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evaluated. The table highlights their performance metrics,
key contributions, and the advantages and limitations of
each approach.

Furthermore, the computational complexity of the reviewed
models is discussed in Table II, which compares the
FLOPs, GPU memory usage, and other resource demands
of each model. This table provides insight into the trade-
offs between performance and computational efficiency for
each architecture.

Additionally, Table III summarizes the different techniques
for pulmonary nodule detection and diagnosis, showcasing
how each model performs in terms of sensitivity and
specificity. The table also outlines the main methods used,
such as CNN, YOLOv4, and U-Net, and their performance
across various nodule types and datasets.

B.

Challenges and Limitations

While deep learning models have made remarkable
strides, several challenges still need to be addressed for the
broader adoption of Al systems in clinical settings:

1.

Generalization to Real-World Data:
A major limitation of current models is their
dependence on curated datasets, like LUNA16 or
LIDC, which may not fully represent real-world
clinical data. In real-world clinical practice, CT
scans vary in quality, and models trained on high-
quality, curated data may struggle when faced with
noisy, incomplete, or non-uniform data from
diverse sources. The generalization of models to
diverse patient populations, scanners, and medical
settings remains a significant challenge that needs
to be addressed to make Al systems reliable in
real-world healthcare environments.

Clinical Validation:
To ensure that deep learning models perform well
in clinical environments, they must be tested on
real-world datasets from non-curated hospital CT
scans. These scans often exhibit more variability
than those from curated datasets, including
different scanning protocols, patient
demographics, and the presence of artifacts.
Evaluating models on such datasets is crucial to
assess their ability to generalize across the diverse,
noisy, and incomplete data that is common in
everyday clinical practice. Additionally, using data
augmentation, domain adaptation, and transfer
learning techniques could help improve the
generalization of models, making them more
suitable for clinical deployment.

Data Imbalance:
Many lung cancer datasets suffer from class
imbalance, with a disproportionate number of
benign nodules compared to malignant ones. This
imbalance can cause models to become biased
toward detecting benign nodules, leading to false
negatives, especially for rare or -early-stage
cancers. Approaches such as data augmentation,
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C.

class weighting, or the use of more balanced
datasets are essential to mitigate this issue and
improve model performance.

Computational Complexity:
Models like transformers, Mask R-CNN, and
hybrid systems demand extensive computational
resources. For example, models such as 3D-
MSVIT require high GPU memory (8—12 GB) and
processing power, which can be prohibitive for
deployment in low-resource settings or for real-
time applications. While advancements in model
optimization and hardware can address some of
these issues, edge computing and model
compression will be crucial for the adoption of
these technologies in clinical practice.
Interpretability and Transparency:
One of the major concerns with Al models is the
lack of interpretability. Many deep learning
models function as “black boxes,” where the
reasoning behind a model's decision is not easily
understandable. In medical applications, this lack
of transparency is a significant barrier to trust, as
clinicians need to understand the rationale behind
a diagnosis or recommendation. Developing
explainable AI (XAI) solutions that provide
insights into how decisions are made will be key to
gaining clinician acceptance and integrating these
systems into clinical workflows.

Future Directions

To overcome the current limitations and improve the
clinical applicability of deep learning models for lung
cancer detection, several areas need further exploration:

1.

Federated Learning
Models:

The privacy concerns surrounding medical data
can hinder the development of large, multi-
institutional datasets. Federated learning, where
models are trained on decentralized data across
multiple hospitals without sharing patient
information, can address these concerns while
enabling the development of more generalized and
robust models. This approach could significantly
improve model performance and generalization.

and Privacy-Preserving

Real-Time and Edge Computing Solutions:
Many current models require significant
computational power for both training and

inference. To enable real-time detection of lung
cancer in clinical settings, research should focus
on optimizing models for edge computing, where
the data processing happens on-site with minimal
latency. This could make deep learning-based
diagnostic tools more accessible in resource-
limited environments, such as rural clinics or
emergency rooms.
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3. Multimodal Data Integration:
Incorporating ~ multimodal  data—such  as
combining CT images with clinical information
(e.g., age, smoking history, genetic data)—can
improve the model's diagnostic accuracy.
Integrating diverse data sources allows for a more
comprehensive understanding of the patient’s
condition, potentially leading to earlier detection
and more personalized treatment plans.

4. Diversity in Datasets:
There is a clear need for more diverse and

Table [

Performance

Method Architecture Dataset

Key

representative datasets that capture variations in
imaging conditions, patient demographics, and
scanner types. Models trained on such diverse data
are more likely to generalize well in real-world
settings. Collaborative efforts between healthcare
providers worldwide to build larger and more
diverse datasets will be instrumental in addressing
this issue.

Comparison of Different Methodology

Limitations

Advantages

Complexity

Metrics

Contributions

Liu et CDP-ResNet  LIDC (986 DSC: Superior High No classification High
al. [11] (Cascaded annotated 82.69% segmentation =~ segmentation module
Dual- nodules) accuracy; 3D | accuracy, 3D
Pathway visualization views
ResNet)
Liu et CA-Net DSB 2017 Accuracy: Attention- Effective Lacks Medium
al. [12] (Context (Cancer 83.79% enhanced contextual segmentation/detection
Attention prediction) context feature
Network) integration capture
Mei et Mask R- LUNA16 Sensitivity: Multi-scale Strong High computational High
al. [13] CNN + (ISBI 2016 88.1% feature detection burden
ResNet-50 + Challenge) learning performance
FPN
Cai et ALIAS (Al | Collaborative Accuracy: Joint Diverse data | Limited segmentation Medium
al. [14] Lung (7,716 83.8% segmentation improves metrics
Imaging patients) & detection on | generalization
Analysis large dataset
System)
Chen et SANet PNO (40,439 Prec: U-Net-based; Effective Low precision on Medium-
al. [15]  (Slice-Aware annotated 35.92%, Rec: optimized candidate difficult cases High
Net with nodules) 70.20%, Acc: candidate detection
SGNL) 87% generation pipeline
Table I Computational Complexity of Reviewed Models for Lung Cancer Detection
Model Architecture FLOPs (Estimate) GPU Memory Usage Notes
Dual pathways and 3D
CDP-ResNet e ~20-40 GFLOPs High (6-10 GB) COIlVOhIl)tiOIlS iI}llcrease cost
Pathway ResNet .
significantly.
Context Attention Attention modules increase cost
CA-Net Network ~10-15 GFLOPs Moderate (4-6 GB) but model remains relatively
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efficient.

Region proposal networks +

Mask R-CNN = ResNet-50 + Feature . ;

+ FPN IEs i N ~40-60 GFLOPs High (8-12 GB) multi-scale featur@s are compute

intensive.
. . Complexity depends on
ALIAS Hybrid Deep Learning ~15-25 GFLOPs Moderate (~6 GB) segmentation and detection
System
branches.
. Multi-view slice processing and
Slice-Aware Network . )
SANet + SGNL module ~25-30 GFLOPs High (7-10 GB) graph-based Cf;c)esl:ures increase
Table Il Computational Pulmonary Nodule Detection Table

Technique

Validation/Test Method Nodules Types

Main Method

Model
Performance

Pulmonary
nodule
detection and
diagnosis
with CAD
YOLOv4
model for
nodule
detection
Nodule
detection
using 16
filters and
Boolean logic
Automated
nodule
detection
with 3D U-
Net
Segmentation
and
classification
with SVM,
DCNN
U-Net for
segmentation,
CNN for
classification
Multi-task
dual-branch
3D CNN with
attention
fusion
Adaptive 3D
CNN for lung
cancer
detection
Hierarchical
YOLOV5Ss

2D and
3D

2D

3D

3D

2D and
3D

3D

3D

3D

2D and
3D
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Performance varies

CNN; SAE based on dataset used
YOLOv4 Sensitivityg\ivoi/‘zh FP/scan:
CNN 10-fold cross-validation
CNN; 3D U-Net 10-fold cross-validation
SVM, DCNN 10-fold cross-validation

U-Net, CNN 80:20 train-test split

R 5-fold cross-validation

CNN
3D CNN 10-fold cross-validation
YOLOVvS5s, 3D
CNN Evaluated on LUNA16

Multiple
appearances
and shapes
(size < 10mm)

Various nodule
types

Nodules larger
than 3mm

Nodules > Smm

Solitary, juxta-
pleural

Cancerous or
non-cancerous

Lung
parenchyma
and chest wall
nodules

Types, shapes,
sizes: 3-30mm

Pulmonary
nodules

Performance
comparison of
CAD methods

YOLOv4 model

16 filters and
Boolean logic

Automated
nodule
detection with
3D U-Net

Segmentation,
SVM, DCNN

U-Net for
segmentation,
CNN for
classification

Multi-task dual-
branch 3D
CNN with

attention fusion

Adaptive 3D
CNN

Hierarchical
YOLOvS5s, 3D

Accuracy,
Sensitivity

Sensitivity with
FP/scan: 81%

Sensitivity:
92.75%, 8 false
positives

Internal CPM:
94.7%,
External CPM:
83.3%

SVM: 91.4%,
DCNN: 95%

Sensitivity:
0.75 (before),
0.65 (after
classification)

Sensitivity:
91.33%, 0.125
to 8 FPs/scan

Sensitivity:
0.947, FP/s:
0.14

Sensitivity:
97.8%,



Technique

Validation/Test Method

Nodules Types

Main Method

Model
Performance

and 3D CNN CNN confidence: 0.3
Transformer- Sensitivity:
based TiCNet . Transformer, ensitivity:
for lun 3D Transformer, 10-fold cross validation Benign and attention, multi- 93%, <11
g CNN malignant > FP/scan, CPM:
cancer scale fusion
; 90.73%
detection
Multi-crop il DSC:
(CN 71 2D Multi-crop CNN 5-fold cross validation Vemous moe CNN, boundary UG
boundary types 0.978, LIDC:
refinement
refinement 0.982
LIDC-IDRI:
Self-attention Self-attention 85.39%,
multi-scale _— Benign and multi-scale LiTS2017
feature fusion 3D DS-MSFE-Net | 10-fold cross validation malignant feature fusion | liver: 95.79%,
network network LiTS2017
tumor: 91.75%
Pretrained Pretrained LUNALIG6:
encoders for UNet, FPN, s Various nodule fetratne 0.978,
2D 5-fold cross validation encoders: e
lung nodule PSPNet types Sensitivity:
3 ResNet
segmentation 97.6%
Custom-
VGG16 Benien and Custom- LIDC: 0.982,
model for 2D Custom-VGG16 | 10-fold cross validation & VGG16 with Sensitivity:
malignant . o
nodule preprocessing 98%
classification
reliability and clinical relevance. Additionally, the

IV. CONCLUSION

In conclusion, this review provides a comprehensive
synthesis of deep learning advancements in lung cancer
detection, highlighting a broad spectrum of model
architectures and benchmark datasets. Techniques such as
convolutional neural networks, residual networks, attention
mechanisms, and transformer-based models have
significantly enhanced the performance of lung nodule
detection, segmentation, and classification, particularly in CT
imaging. The use of large, annotated datasets like LIDC-
IDRI, LUNA16, and DSB 2017 has further contributed to
improvements in accuracy and consistency across various
tasks in medical image analysis.

Despite these advancements, several challenges persist.
Current models often demand substantial computational
resources and may exhibit limited generalizability across
diverse populations. Furthermore, many deep learning
systems are not yet fully aligned with clinical workflows,
facing issues related to interpretability and practical
integration in healthcare environments. Addressing these
limitations is essential for successful real-world adoption.
Future research should prioritize the development of
lightweight and efficient models capable of integrating multi-
scale features and contextual cues while maintaining high
performance. Incorporating clinical knowledge into the
design and evaluation of these models can enhance their
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exploration of explainable Al techniques and federated
learning frameworks may improve model transparency and
cross-institutional adaptability. These research directions are
expected to play a crucial role in advancing the deployment
of deep learning models in clinical settings, ultimately
facilitating earlier detection and more effective treatment of
lung cancer.

V. Findings and Recommendations

Based on the comprehensive review of existing lung cancer
detection techniques, the following findings and
recommendations are presented to guide future research and
practical implementations:

D. Findings

The review of existing lung cancer detection techniques has
provided valuable insights into the strengths and limitations
of various approaches. By analyzing the current state-of-
the-art methods, we can identify key trends and areas that
need further development. The following findings highlight
the most significant observations from the literature,
particularly in the application of deep learning, the
challenges associated with traditional machine learning
models, and the critical importance of data preprocessing
and evaluation metrics. These findings will guide future
research efforts and the practical implementation of lung
cancer detection systems in clinical settings.
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E.

Deep Learning Dominance: Convolutional Neural
Networks (CNN5s) and transfer learning have
shown consistently high accuracy in lung cancer
detection, especially when trained on large
datasets.

Traditional Machine Learning Limitations:
Classical models such as SVM and KNN are still
used but often fall short in performance compared
to deep learning approaches, particularly in
complex or noisy medical images.

Data Imbalance and Preprocessing: Most studies
highlight the importance of preprocessing (e.g.,
image normalization, augmentation) and address
data imbalance using techniques like SMOTE or
class weighting.

Evaluation Metrics: Accuracy remains the most
reported metric; however, sensitivity and
specificity are more clinically relevant and should
be emphasized.

Recommendations

Based on the findings from the comprehensive review,
several key recommendations are made to guide future
advancements in lung cancer detection techniques. These
suggestions aim to address the current challenges, enhance
model performance, and ensure the practical applicability
of the methods in clinical environments. The following
recommendations outline important steps for researchers
and practitioners to improve the accuracy, reliability, and
interpretability of lung cancer detection models.

Use of Recent Datasets: Researchers should
prioritize publicly available, high-resolution, and
annotated datasets such as LUNA16, LIDC-IDRI,
and more recent Kaggle competitions.

Standardized Benchmarks: It's important to
evaluate models on standardized benchmarks with
consistent metrics and experimental setups for fair
comparison.

Explainable Al (XAI): Incorporating
interpretability tools (e.g., Grad-CAM, LIME) is
recommended to improve trust in clinical
applications.

Hybrid and Ensemble Approaches: Combining
CNNs with attention mechanisms or ensemble
learning has shown promise and should be further
explored.
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5. Reproducibility and Open Access: Future studies
should publish code, model parameters, and
training details to enhance reproducibility and
collaboration.
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