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ABSTRACT Lung cancer continues to be the leading cause of cancer-related deaths worldwide, with nearly 2 
million new cases and 1.76 million deaths each year. Late diagnosis plays a major role in poor outcomes, making early 
detection critical to improving survival rates. Advances in computer science, especially in data mining, machine 
learning, and artificial intelligence (AI), present new opportunities to transform lung cancer research by enabling more 
accurate and timely diagnoses. This study reviews a range of computational models used in lung cancer detection and 
diagnosis, with particular emphasis on image analysis and predictive analytics. Methods such as convolutional neural 
networks (CNNs), attention mechanisms, and transformers have been utilized to improve the accuracy of lung nodule 
segmentation, classification, and malignancy prediction. This work investigates the application of AI-driven models 
for evaluating extensive datasets derived from CT scans, along with enhancements in diagnostic consistency and 
accuracy relative to human radiologists. The discussion addresses the challenges of data integrity, model openness, 
and ethical considerations in integrating AI into therapeutic settings. This review provides an overview of the role of 
computer science in advancing lung cancer research, highlighting the possibilities for technological innovation. 
Interdisciplinary collaboration is essential for developing robust, intelligible, and scalable AI models that facilitate 
early diagnosis, enhance patient care, and seamlessly integrate into healthcare workflows. 
 
INDEX TERMS Computed tomography, Deep learning, Lung nodule detection, Lung nodule segmentation

I. INTRODUCTION 
Lung cancer arises in the lungs, which are the initial organs 
for respiration. It is the primary cause of cancer-related 
deaths worldwide. Lung cancer is categorized into two types: 
small-cell lung cancer (SCLC) and non-small cell lung 
cancer (NSCLC). Small cell lung cancer (SCLC) comprises 
little neoplastic cells observable by microscopy. Conversely, 
with SCLC, the cancer cells exhibit more proliferation. 
Typically, small cell lung cancer (SCLC) advances more 
rapidly than non-small cell lung cancer (NSCLC). NSCLC 
constitutes the predominant form of the disease. It occurs 
when atypical cells in the lungs proliferate uncontrollably, 
resulting in a tumor or cancer that originates in the lungs, the 
organs essential for respiration, which can disrupt normal 
lung function. Lung cancer is primarily attributed to 
smoking; however, it may also result from many 
environmental factors, including air pollution and exposure 
to radon gas. Tobacco consumption is the principal cause of 
lung cancer, responsible for more than 80% of all cases [1]. 
Prevalent dangers encompass exposure to air pollution, 
secondhand smoke, radon gas, and particular chemicals and 
substances found in certain occupational environments. The 

World Health Organization estimates that lung cancer will 
cause approximately 1.8 million deaths worldwide in 2020, 
representing nearly 18% of all cancer-related mortality, as 
illustrated in Figure 1 [2]. In 2019, 324,949 patients in Egypt 
received state-funded treatment for malignant neoplasms [3]. 
According to December 2020 estimates from the Global 
Cancer Observatory (GLOBOCAN), the most prevalent 
cancers in Egypt, with a 5-year prevalence across all age 
groups, include breast, lung, colorectal, prostate, stomach, 
liver, and cervical cancer, totaling 8,879,843 cases for all 
cancers, as depicted in Figure 2 [4].  

Figure 1: Statistics for cancers on the globe [2] 
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The primary objective is currently to identify and predict 
cancer to initiate treatment promptly [5]. Screening and 
incidental findings represent the two primary approaches for 
identifying lung cancer. Like breast cancer screening, the 
main method for identifying lung cancer should involve 
screening [6]. Nonetheless, the majority of countries, 
including the UK, do not have a screening program, resulting 
in most cases being identified incidentally. Lung nodules are 
often identified incidentally during the evaluation of other 
organs. Nodules may be identified during a computerized 
tomography (CT) scan of the heart or liver. The primary 
challenge is the insufficient skills of radiologists in 
differentiating between benign and malignant nodules [7]. 
Patients should be referred to a pulmonologist for the 
administration of tests aimed at detecting malignant cells and 
excluding other medical conditions. Clinicians order a lung 
X-ray to identify signs of tumors, scarring, or fluid 

accumulation, as these may suggest the presence of a 
suspicious lump or nodule [8]. CT scans can identify even 
minor lung abnormalities that may be overlooked by X-rays. 
A biopsy can be performed using bronchoscopy, among 
other methods. The physician evaluates abnormal lung areas 
by introducing a lighted instrument through the patient's 
oesophagus and into the lungs. Mediastinoscopy is a 
procedure that acquires lymph node tissue samples by 
inserting surgical instruments through an incision at the base 
of the neck and behind the sternum. A needle biopsy is a 
procedure in which a physician inserts a needle into lung 
tissue via the chest wall, utilizing X-ray or CT imaging to 
identify abnormal cells. An alternative approach involves 
obtaining a biopsy sample from lymph nodes or other 
metastatic locations of the malignancy, including the liver 
[9]. The application of three-dimensional visualization 
diagnostics in lung cancer detection improves the capacity of 
radiologists and oncologists to comprehend the spatial 
distribution and characteristics of lung lesions. This 
facilitates accurate diagnosis, treatment planning, and 
continuous monitoring of lung cancer patients, potentially 
leading to enhanced patient outcomes over time [10]. The use 
of three-dimensional visualization diagnostics in lung cancer 
detection enables radiologists and oncologists to gain a 
thorough understanding of the spatial distribution and 
characteristics of lung lesions. This enables accurate 
diagnosis, treatment planning, and monitoring of lung cancer 
patients, leading to improved patient outcomes. This is 
accomplished by applying machine learning techniques to 
large datasets of healthcare images. 
 

II. RELATED WORK 
The early detection of lung cancer relies heavily on the 
identification, segmentation, and classification of lung 
nodules where great advancements have been seen with the 
use of Deep learning approaches. Over the past few years, 
several innovative strategies have emerged to pay attention 
to the performance of these tasks, built on more 
sophisticated neural network structures, attention models, 
and multi-scale feature extraction mechanisms. In this 
portion, the authors will mention some of the most 
advanced technologies that allow conducting lung nodule 
analysis in CT images. 
In this review of the related literature, concepts of the key 
architectural developments and application of dataset 
goodness of fit which have progressed lung nodule analysis 
have been presented, forming a basis to appreciate the 
current standing of the field and its possible remaining 
challenges. 
This review of the related literature presents concepts of the 
key architectural developments and application of dataset 
goodness of fit that have progressed lung nodule analysis, 
forming a basis for appreciating the field's current standing 
and possible remaining challenges. 

Liu et al. [11] developed a data-driven method called the 
cascaded dual-pathway residual network (CDP-ResNet), 
where the ResNet architecture is modified with the goal of 
improving lung nodule segmentation in CT images. 
Thereafter, this model determines the probability associated 
with a voxel being a part of the nodule and demonstrates a 
3D rendering of the nodule segmentation result. The lung 
image database consortium (LIDC) dataset providing 986 
annotated nodules was the data-set that this method was 
applied on four times and evaluated by four radiologists. 
The results show that the effectiveness of the model CDP-
ResNet is more than the assessment of four different 
radiologists. The Dice similarit coefficient (DSC) on the 
average between CDP-ResNet and each radiologist is 82.69 
percent which is higher than the average variability 
between radiologists on the LIDC dataset which is 82.66 
percent [11]. 
Liu et al. [12] implemented the context attention network 
CA-Net, which however is able to extract both context 
features and nodule and fuse them in the processes of 
benignity/malignancy.” For the purpose of contextual 
feature(s) that may be associated with the nodule to be 
effective, an attention mechanism that incorporates 
nodule(s) is used as a cue. Furthermore, it is possible that 

Figure 2: Statistics prevalent cancers in Egypt [4] 
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the effects of contextual features on classification differ for 
different nodules. The data science bowl 2017 (DSB) is a 
dataset for lung cancer prediction worked for the purposes 
of test and evaluation. CA-Net is reported to have an 
accuracy of 83.79% [12].  
Mei et al. [13] introduced the U-NET architecture to Mask 
R-CNN for the multi-class segmentation of nuclei in 
histopathology images for breast cancer detection. The 
RPN networks predict region proposals for image 
components that may contain the nodule of interest. The 
lung nodule analysis (LUNA) challenge is evaluated using 
the publicly available LUNA16 Dataset formed part of the 
ISBI 2016 competition. It is reported that Mask R-CNN 
gives a sensitivity of 88.1% [13]. 
Cai et al. [14] came up with a system that uses artificial 
intelligence in imaging for the lungs, naming it ALIAS 
which stands for Artificial Intelligence Lung Imaging 
Analysis System, which includes networks for the detection 
and segmentation of lung nodules. The three-dimensional 
cascade FPN of the rectified linear unit is applied for the 
identification of nodules. In the case of nodule based 
analysis, histograms of hounsfield units (Hus) and radionics 
features are being used in the extraction. These features 
enable the evaluation of the differences that malignant and 
benign nodules sized differently possess. The images used 
during the ALIAS were tested and evaluated on images 
acquired from collaborating institutes, based on the 
established Institutional review board protocols, and the 
particular material transfer agreements. This assessment 
covers a whole of 8540 pulmonary CT images obtained 
from 7716 patients. There were 138 malignant (positive) 
nodules and 91 benign (negative) nodules in the testing set, 
and the accuracy was therefore set at 83.8% [14]. 
In the study by Chen et al. [15], a slice-aware network 
(SANet) was deployed towards the detection of lung 
nodules. This network utilizes a combines a slice-grouped 
non-local (SGNL) module with U-net like structure 
ResBlock to produce the nodule candidate generation. The 
dataset PN9 was used to evaluate and validate the 
performance of SANet. PN9 consists of 40439 annotated 
thoracic nodules and 8798 CT scans of nodules. 
Results of the analysis demonstrate that SANet reaches a 
precision and recall of 35.92% and 70.20%, which indicates 
that the accuracy stands at 87% [15]. 
Mkindu et al. [16] came up with a method for computer 
aided detection of CAD involving a 3D Vision transformer 
multi-scale (MSViT). One of the architecture possesses a 
Local-global transformer back block, the local transformer 
stage of this architecture first processes each scale patch 
separately and integrates when they get to the global 
transformer level in order to fuse multi-scale features. The 
proposed CAD scheme was validated using 888 CT images 
extracted from LUNA16 dataset, a publicly available 
database. Trained and tested using 3D-MSViT algorithm 
Achieved accuracy rate of 91.1% [16]. 

Zhang and Zhang [17] located a 3D selective kernel residual 
network SK-ResNet which is based on selective kernel 
network and three-dimensional residual network. A 3D RPN 
employing SK-ResNet has been proposed for lung nodule 
recognition and a multi-scale feature fusion network for 
nodule classification has been developed. The validity of the 
method has been performed and evaluated on LUNA16, 
publicly available dataset. For the SK-ResNet, the accuracy 
of 91.75% was attained [17]. 
Lavika and Satyansh [18] proposed a hybrid deep learning 
approach combining a modified YOLOv3 architecture with 
the Biogeography-Based Optimization (BBO) and 
Exponential Elitism (EE) optimizer for lung cancer detection. 
This model leverages the efficiency of YOLOv3 for real-time 
object detection, while the BBO/EE optimizer fine-tunes the 
model's hyperparameters to enhance detection accuracy and 
computational performance. The method was evaluated on 
the publicly available LUNA16 dataset, achieving an 
impressive detection accuracy and sensitivity of 93.5%, 
demonstrating its effectiveness in identifying and classifying 
lung nodules in CT scan images [18]. 
Z. UrRehman et al. [19] proposed an effective deep 
convolutional neural network (CNN) for lung nodule 
detection that integrates dual attention mechanisms to 
enhance feature extraction and improve the detection of 
small and subtle lung nodules. Their model leverages both 
spatial and channel-wise attention to refine feature maps, 
significantly boosting the accuracy of the network in 
detecting lung nodules in CT scan images. Evaluated on the 
LUNA16 dataset, the model achieved a sensitivity of 92.7% 
and a specificity of 89.5%, demonstrating its robustness in 
distinguishing between malignant and benign nodules [19]. 
Brocki and Chung [20] proposed an innovative approach that 
combines radiomics and tumor biomarkers with interpretable 
machine learning models for cancer diagnosis. Their model 
integrates advanced machine learning techniques to analyze 
radiomics data, improving both the accuracy and 
interpretability of cancer detection systems. By using tumor 
biomarkers in conjunction with radiomic features, the model 
showed promising results in enhancing detection 
performance across various cancer types. The method 
demonstrated its potential in clinical settings by improving 
the accuracy of diagnoses while maintaining model 
transparency, which is crucial for clinical decision-making. 
Their work highlights the importance of integrating domain-
specific features for improved cancer detection and 
classification [20]. 
In addition, Brocki and Chung [21] introduced ConRad, an 
open-source framework designed to integrate radiomics and 
tumor biomarkers into machine learning models. The 
framework, available on GitHub, provides a versatile tool for 
researchers and clinicians, allowing for more personalized 
and accurate cancer diagnostic models. This tool has the 
potential to significantly advance research by enabling easy 
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access to a robust platform for integrating clinical data and 
machine learning [21]. 
Xie et al. [22] introduced a novel approach to the challenging 
task of automated pulmonary nodule detection in CT images. 
The primary objective of their work is to assist the CT 
reading process by quickly identifying lung nodules. They 
proposed a two-stage methodology: first, nodule candidate 
detection, and then false positive reduction. Their detection 
framework is built on a modified version of Faster Region-
based CNN (Faster R-CNN), which includes two region 
proposal networks and a deconvolutional layer for detecting 
nodule candidates. Three models were trained for different 
slice types to incorporate 3D lung information, with the 
results later fused. To reduce false positives, the authors 
developed a boosting 2D CNN architecture, sequentially 
training three models to handle increasingly complex 
mimics. Misclassified samples were retrained to enhance 
sensitivity. Evaluating their model on the LUNA16 dataset, 
they achieved a sensitivity of 86.42% for detecting nodule 
candidates and sensitivities of 73.40% and 74.40% at 1/8 and 
1/4 false positives per scan, respectively, for false positive 
reduction [22]. 
Sun et al. [23] addressed the issue of low accuracy in 
traditional lung cancer detection methods, particularly in 
real-world diagnostic environments. To overcome this 
limitation, they proposed the use of the Swin Transformer 
model for both lung cancer classification and segmentation 
tasks. Their approach introduces a novel visual converter that 
produces hierarchical feature representations with linear 
computational complexity relative to the input image size. 
The LUNA16 and MSD datasets were used for segmentation 
tasks, comparing the Swin Transformer’s performance with 
other models like Vision Transformer (ViT), ResNet-101, 
and Data-Efficient Image Transformers (DeiT-S). The results 
revealed that the pre-trained Swin-B model achieved a top-1 
accuracy of 82.26% in classification tasks, outperforming 
ViT by 2.53%. In segmentation tasks, the Swin-S model 
showed a mean Intersection over Union (mIoU) of 47.93%, 
outperforming other methods and demonstrating the model’s 
superior performance [23]. 
Agnes et al. [24] tackled the challenge of manually 
examining small nodules in CT scans, a time-consuming task 
hindered by the limitations of human vision. To address this, 
they introduced a deep learning-based computer-aided 
diagnosis (CAD) framework for faster and more accurate 
lung cancer diagnosis. The authors employed a dilated 
SegNet model for lung segmentation from chest CT images, 
alongside a custom CNN model with batch normalization to 
identify true nodules. The performance of the segmentation 
model was evaluated using the Dice coefficient, while 
sensitivity was used to assess the nodule classifier. The CNN 
model's discriminative power was further validated using 
principal component analysis. Experimental results showed 
that the dilated SegNet model achieved a Dice coefficient of 
89.00 ± 23.00%, and the custom CNN model achieved a 

sensitivity of 94.80% for nodule classification. These models 
excelled in both lung segmentation and 2D nodule patch 
classification within the CAD system for CT-based lung 
cancer diagnosis [24]. 
Yuan et al. [25] proposed a novel method for early lung 
cancer diagnosis and timely treatment through the detection 
of malignant nodules in chest CT scans. Their method 
combines structured radiological data with unstructured CT 
patch data to distinguish between benign and malignant 
nodules. The multi-modal fusion multi-branch classification 
network they developed utilizes a multi-branch fusion-based 
effective attention mechanism for 3D CT patch data. It 
incorporates a 3D ECA-ResNet, inspired by ECA-Net, to 
dynamically adjust features. Tested on the LUNA16 and 
LIDC-IDRI datasets, the network achieved an accuracy of 
94.89%, sensitivity of 94.91%, and F1-score of 94.65%, with 
a low false positive rate of 5.55% [25]. 
Hassan Mkindu et al. [26] introduced a computer-aided 
diagnosis (CAD) system for lung nodule prediction based on 
a 3D multi-scale vision transformer (3D-MSViT). The goal 
was to enhance the prediction efficiency of lung nodules 
from 3D CT images by improving multi-scale feature 
extraction. The 3D-MSViT architecture uses a local-global 
transformer block structure, where the local transformer stage 
processes each scale patch individually before merging 
multi-scale features at the global transformer level. Unlike 
traditional methods, this approach relies solely on the 
attention mechanism, reducing the network's parameters by 
eliminating the use of CNNs. Evaluating the model on the 
LUNA16 database, they achieved the highest sensitivity of 
97.81% and competition performance metrics of 91.10%. 
While this method was highly effective, it is limited to a 
single image modality (CT images) and lacks a stage for 
false-positive reduction. The 3D-ViTNet architecture, which 
relies on a single-scale vision transformer encoder without 
CNNs, was also tested, showing that integrating 3D ResNet 
with the attention module significantly improved detection 
sensitivity. However, 3DViTNet’s performance was slightly 
lower in terms of sensitivity compared to the 3D-MSViT 
model, which provided the best results [26]. 
Tan et al. [27] proposed a deep learning model for 
discriminating between tuberculosis (TB) lung nodules and 
early lung cancers in CT images. Their model leverages deep 
learning techniques to identify subtle differences between the 
two conditions, which can often be challenging for 
radiologists. The study showed promising results in 
improving the accuracy of lung cancer detection by 
distinguishing between TB-related nodules and early-stage 
lung cancers [27]. 
National Institute of Allergy and Infectious Diseases [28] 
provides an online TB portal for research and resources 
related to tuberculosis. This platform supports various 
scientific communities by offering valuable tools and 
datasets. It serves as a key resource for understanding TB-
related diseases and provides data that can be integrated with 
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other health research, including lung cancer detection studies 
[28]. 
Li et al. [29] introduced the concept of time-distance vision 
transformers for lung cancer diagnosis using longitudinal CT 
images. Their model leverages temporal information to track 
nodule growth and detect potential malignancies over time. 
By employing vision transformers, the model can analyze the 
sequential nature of CT scans, leading to improved accuracy 
in lung cancer detection and diagnosis [29]. 
Li [30] developed the code for the Time Distance 
Transformer, which can be accessed via GitHub. This open-
source tool provides researchers with a framework for 
applying vision transformers to longitudinal CT data, 
enabling better modeling of temporal dependencies in lung 
cancer detection [30]. 
Lu et al. [31] proposed a deep learning model that uses chest 
radiographs to identify high-risk smokers for lung cancer 
screening, utilizing computed tomography (CT) scans. Their 
prediction model was developed and validated with clinical 
data, showing significant potential in identifying individuals 
at high risk for lung cancer, thus improving early detection 
rates. The model's effectiveness in identifying high-risk 
individuals for lung cancer screening has implications for 
targeted interventions and prevention strategies [31]. 
Jian et al. [32] proposed a dual-branch network, DBPNDNet, 
which uses 3D Convolutional Neural Networks (3D-CNN) 
for pulmonary nodule detection. Their approach, aimed at 
enhancing detection accuracy, utilizes two branches that 
independently process different scales of CT images, 
improving both sensitivity and specificity for lung cancer 
diagnosis. The model achieves promising results in detecting 
lung nodules, helping clinicians in the early diagnosis of lung 
cancer [32]. 
Zhao et al. [33] introduced an attentive and adaptive 3D 
CNN for automatic pulmonary nodule detection in CT 
images. Their model integrates attention mechanisms to 
focus on relevant features, significantly enhancing detection 
accuracy. Evaluated on a variety of CT scans, their method 
demonstrated improvements in the detection of small and 
subtle nodules compared to traditional CNN-based 
approaches[33]. 
Ahmadyar et al. [34] developed a hierarchical approach for 
pulmonary nodule identification by combining a YOLO 
model with a 3D neural network classifier. This framework 
efficiently detects and classifies lung nodules in CT images. 
The integration of YOLO for initial nodule localization 
followed by 3D CNN-based classification significantly 
improves the accuracy of nodule detection [34]. 
Ma et al. [35] introduced TICNet, a transformer-based 
network integrated with CNNs for pulmonary nodule 
detection. Their model, leveraging the strengths of 
transformers in handling long-range dependencies, showed 
enhanced performance over traditional CNNs for detecting 
lung nodules in CT scans. The fusion of convolutional and 

transformer-based architectures allowed for better handling 
of complex CT images [35]. 
Sweetline et al. [36] proposed a multi-crop CNN approach to 
address the challenge of accurately segmenting lung nodules. 
Their method uses multiple crop sizes to focus on different 
parts of the nodule, improving segmentation accuracy, 
particularly for smaller and irregular nodules. This approach 
showed improved performance compared to conventional 
segmentation methods [36]. 
Zhang et al. [37] introduced DS-MSFF-Net, a dual-path self-
attention multi-scale feature fusion network for CT image 
segmentation. Their model uses self-attention mechanisms to 
capture long-range dependencies and multi-scale features, 
significantly improving the segmentation accuracy of lung 
nodules. The model was evaluated on standard datasets, 
showing better performance in terms of both segmentation 
accuracy and computational efficiency [37]. 
Suji et al. [38] explored the use of pretrained encoders for 
lung nodule segmentation, utilizing the LIDC-IDRI dataset. 
Their approach leverages transfer learning with pretrained 
models to enhance the accuracy of nodule segmentation, 
achieving promising results and reducing the training time 
required for deep learning models [38]. 
Asiya and Sugitha [39] focused on automatically segmenting 
and classifying lung nodules from CT images. They 
developed a deep learning-based framework that integrates 
segmentation and classification into a unified model, 
showing high sensitivity and specificity for classifying lung 
nodules, particularly in complex cases [39]. 
Tang et al. [40] introduced SM-RNet, a scale-aware multi-
attention guided reverse network for pulmonary nodule 
segmentation. Their model utilizes attention mechanisms to 
guide the segmentation process, helping to improve 
performance in detecting both small and large nodules in CT 
images. The approach was evaluated on multiple datasets, 
demonstrating significant improvements in segmentation 
accuracy [40]. 
Cai et al. [41] proposed MDFN, a multi-level dynamic fusion 
network for lung nodule segmentation. Their model 
incorporates self-calibrated edge enhancement techniques to 
improve the detection of nodule boundaries, achieving high 
accuracy in both segmentation and classification tasks. This 
model shows promise in improving early diagnosis by 
enhancing the delineation of lung nodules [41]. 
Fu et al. [42] investigated the fusion of 3D lung CT data and 
serum biomarkers for diagnosing multiple pathological types 
of pulmonary nodules. Their approach combines imaging 
data with clinical biomarkers, improving the diagnostic 
performance of lung cancer models and aiding in the 
classification of benign and malignant nodules [42]. 
Zhan et al. [43] introduced an uncertainty-aware self-training 
framework with consistency regularization for multilabel 
classification of common CT signs in lung nodules. Their 
approach enhances model robustness and accuracy by 
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incorporating uncertainty measures, making it more 
adaptable to real-world clinical environments [43]. 
Rahouma et al. [44] proposed an automated 3D CNN 
architecture designed for pulmonary nodule classification 
using a genetic algorithm. Their approach optimizes the CNN 
architecture for better accuracy and efficiency in detecting 
pulmonary nodules, achieving improved classification 
performance in lung cancer screening [44]. 
Lin et al. [45] developed a combined model that integrates 
deep learning, radiomics, and clinical data to classify lung 
nodules in chest CT scans. Their model improves 
classification accuracy by combining feature extraction from 
both image-based and clinical data, enhancing the 
performance of lung cancer diagnosis [45]. 
Singh [46] proposed a novel algorithm for pulmonary nodule 
classification using CNNs on CT scans. Their approach 
leverages CNN's feature extraction capabilities to classify 
lung nodules into malignant or benign categories, improving 
early detection and diagnosis of lung cancer [46]. 
Rana et al. [47] proposed a 3D visualization method for lung 
cancer detection aimed at assisting clinicians in the early 
diagnosis of lung cancer. Their method integrates the 
MobileNet model to enhance the efficiency of feature 
extraction by using depthwise separable convolutions, 
making it computationally efficient. A ray-casting volume 
rendering approach was used to create 3D pulmonary nodular 
models from CT scans. The method achieved a segmentation 
accuracy of 93.3% on the LIDC dataset, demonstrating its 
potential for enhancing early lung cancer detection through 
improved visualization of lung nodules in CT images [47]. 
Kadhim et al. [48] introduced a computer-aided diagnostic 
system for pulmonary nodule detection that evaluates the 
efficacy of various system types. They explored different 
machine learning approaches to enhance the performance of 
nodule detection on CT images. The study found that the 
proposed system significantly improved detection accuracy 
and was effective in identifying both benign and malignant 
lung nodules [48]. 
Bhatt et al. [49] used the YOLOv4 deep learning model for 
pulmonary nodule detection in CT images. Their approach 
achieved high sensitivity and specificity in detecting various 
types of nodules, outperforming traditional methods. The 
model's ability to quickly detect and classify lung nodules 
makes it suitable for real-time clinical applications [49]. 
De Mesquita et al. [50] proposed a novel method for lung 
nodule detection based on Boolean equations and a vector of 
filters technique. This method leverages advanced image 
processing techniques to enhance the detection of nodules in 
CT scans, improving the accuracy of automated detection 
systems [51]. 
Suzuki et al. [51] developed a modified 3D U-Net deep 
learning model for the automated detection of lung nodules 
in chest CT images. The model, validated on both the Lung 
Image Database Consortium and Japanese datasets, achieved 

high accuracy in detecting lung nodules, demonstrating its 
potential for clinical use [51]. 
Karrar et al. [52] presented an automated diagnostic system 
for detecting solitary and juxtapleural pulmonary nodules in 
CT images. Using machine learning techniques, their system 
achieved high detection rates, helping to improve early 
diagnosis and assist radiologists in clinical decision-making 
[52]. 
Bhaskar et al. [53] applied image enhancement techniques 
combined with deep learning models to improve the 
detection and classification of pulmonary lung nodules. Their 
approach demonstrated improved detection accuracy, 
particularly in complex cases where nodules have irregular 
shapes [53]. 

III. DISCUSSION 

The application of deep learning in the interpretation of 
CT images has revolutionized the field of lung cancer 
detection. Through the use of sophisticated neural 
networks, the accuracy of lung nodule detection, 
segmentation, and classification has drastically improved. 
In this review, we analyzed several state-of-the-art 
approaches ranging from traditional Convolutional Neural 
Networks (CNNs) to more advanced Transformer-based 
architectures and Attention Mechanisms. Each of these 
models brings unique contributions to the task of lung 
nodule analysis, and their performance varies based on the 
techniques they utilize and the datasets they are trained on. 

To facilitate a better understanding, the following diagram 
provides a high-level overview of the AI-assisted 
diagnostic process. 

 
Figure 3:AI-Assisted Diagnosis Workflow 

A.  Key Contributions and Performance of Different 
Approaches 
A comparison of various methodologies for lung cancer 
detection is presented in Table I, where different models 
like CDP-ResNet, CA-Net, Mask R-CNN, and ALIAS are 
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evaluated. The table highlights their performance metrics, 
key contributions, and the advantages and limitations of 
each approach. 
Furthermore, the computational complexity of the reviewed 
models is discussed in Table II, which compares the 
FLOPs, GPU memory usage, and other resource demands 
of each model. This table provides insight into the trade-
offs between performance and computational efficiency for 
each architecture. 
Additionally, Table III summarizes the different techniques 
for pulmonary nodule detection and diagnosis, showcasing 
how each model performs in terms of sensitivity and 
specificity. The table also outlines the main methods used, 
such as CNN, YOLOv4, and U-Net, and their performance 
across various nodule types and datasets. 

B. Challenges and Limitations 

While deep learning models have made remarkable 
strides, several challenges still need to be addressed for the 
broader adoption of AI systems in clinical settings: 

1. Generalization to Real-World Data: 
A major limitation of current models is their 
dependence on curated datasets, like LUNA16 or 
LIDC, which may not fully represent real-world 
clinical data. In real-world clinical practice, CT 
scans vary in quality, and models trained on high-
quality, curated data may struggle when faced with 
noisy, incomplete, or non-uniform data from 
diverse sources. The generalization of models to 
diverse patient populations, scanners, and medical 
settings remains a significant challenge that needs 
to be addressed to make AI systems reliable in 
real-world healthcare environments. 
Clinical Validation: 
To ensure that deep learning models perform well 
in clinical environments, they must be tested on 
real-world datasets from non-curated hospital CT 
scans. These scans often exhibit more variability 
than those from curated datasets, including 
different scanning protocols, patient 
demographics, and the presence of artifacts. 
Evaluating models on such datasets is crucial to 
assess their ability to generalize across the diverse, 
noisy, and incomplete data that is common in 
everyday clinical practice. Additionally, using data 
augmentation, domain adaptation, and transfer 
learning techniques could help improve the 
generalization of models, making them more 
suitable for clinical deployment. 

2. Data Imbalance: 
Many lung cancer datasets suffer from class 
imbalance, with a disproportionate number of 
benign nodules compared to malignant ones. This 
imbalance can cause models to become biased 
toward detecting benign nodules, leading to false 
negatives, especially for rare or early-stage 
cancers. Approaches such as data augmentation, 

class weighting, or the use of more balanced 
datasets are essential to mitigate this issue and 
improve model performance. 

3. Computational Complexity: 
Models like transformers, Mask R-CNN, and 
hybrid systems demand extensive computational 
resources. For example, models such as 3D-
MSViT require high GPU memory (8–12 GB) and 
processing power, which can be prohibitive for 
deployment in low-resource settings or for real-
time applications. While advancements in model 
optimization and hardware can address some of 
these issues, edge computing and model 
compression will be crucial for the adoption of 
these technologies in clinical practice. 

4. Interpretability and Transparency: 
One of the major concerns with AI models is the 
lack of interpretability. Many deep learning 
models function as “black boxes,” where the 
reasoning behind a model's decision is not easily 
understandable. In medical applications, this lack 
of transparency is a significant barrier to trust, as 
clinicians need to understand the rationale behind 
a diagnosis or recommendation. Developing 
explainable AI (XAI) solutions that provide 
insights into how decisions are made will be key to 
gaining clinician acceptance and integrating these 
systems into clinical workflows. 

C. Future Directions 

To overcome the current limitations and improve the 
clinical applicability of deep learning models for lung 
cancer detection, several areas need further exploration: 

1. Federated Learning and Privacy-Preserving 
Models: 
The privacy concerns surrounding medical data 
can hinder the development of large, multi-
institutional datasets. Federated learning, where 
models are trained on decentralized data across 
multiple hospitals without sharing patient 
information, can address these concerns while 
enabling the development of more generalized and 
robust models. This approach could significantly 
improve model performance and generalization. 

2. Real-Time and Edge Computing Solutions: 
Many current models require significant 
computational power for both training and 
inference. To enable real-time detection of lung 
cancer in clinical settings, research should focus 
on optimizing models for edge computing, where 
the data processing happens on-site with minimal 
latency. This could make deep learning-based 
diagnostic tools more accessible in resource-
limited environments, such as rural clinics or 
emergency rooms. 
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3. Multimodal Data Integration: 
Incorporating multimodal data—such as 
combining CT images with clinical information 
(e.g., age, smoking history, genetic data)—can 
improve the model's diagnostic accuracy. 
Integrating diverse data sources allows for a more 
comprehensive understanding of the patient’s 
condition, potentially leading to earlier detection 
and more personalized treatment plans. 

4. Diversity in Datasets: 
There is a clear need for more diverse and 

representative datasets that capture variations in 
imaging conditions, patient demographics, and 
scanner types. Models trained on such diverse data 
are more likely to generalize well in real-world 
settings. Collaborative efforts between healthcare 
providers worldwide to build larger and more 
diverse datasets will be instrumental in addressing 
this issue. 

 

 
 

Table I       Comparison of Different Methodology

Method Architecture Dataset Performance 
Metrics 

Key 
Contributions Advantages Limitations Complexity 

Liu et 
al. [11] 

CDP-ResNet 
(Cascaded 

Dual-
Pathway 
ResNet) 

LIDC (986 
annotated 
nodules) 

DSC: 
82.69% 

Superior 
segmentation 
accuracy; 3D 
visualization 

High 
segmentation 
accuracy, 3D 

views 

No classification 
module 

High 

Liu et 
al. [12] 

CA-Net 
(Context 
Attention 
Network) 

DSB 2017 
(Cancer 

prediction) 

Accuracy: 
83.79% 

Attention-
enhanced 
context 

integration 

Effective 
contextual 

feature 
capture 

Lacks 
segmentation/detection 

Medium 

Mei et 
al. [13] 

Mask R-
CNN + 

ResNet-50 + 
FPN 

LUNA16 
(ISBI 2016 
Challenge) 

Sensitivity: 
88.1% 

Multi-scale 
feature 
learning 

Strong 
detection 

performance 

High computational 
burden 

High 

Cai et 
al. [14] 

ALIAS (AI 
Lung 

Imaging 
Analysis 
System) 

Collaborative 
(7,716 

patients) 

Accuracy: 
83.8% 

Joint 
segmentation 

& detection on 
large dataset 

Diverse data 
improves 

generalization 

Limited segmentation 
metrics 

Medium 

Chen et 
al. [15] 

SANet 
(Slice-Aware 

Net with 
SGNL) 

PN9 (40,439 
annotated 
nodules) 

Prec: 
35.92%, Rec: 
70.20%, Acc: 

87% 

U-Net-based; 
optimized 
candidate 
generation 

Effective 
candidate 
detection 
pipeline 

Low precision on 
difficult cases 

Medium-
High 

 
 

Table II      Computational Complexity of Reviewed Models for Lung Cancer Detection

Model Architecture FLOPs (Estimate) GPU Memory Usage Notes 

CDP-ResNet Cascaded Dual-
Pathway ResNet ~20–40 GFLOPs High (6–10 GB) 

Dual pathways and 3D 
convolutions increase cost 

significantly. 

CA-Net Context Attention 
Network ~10–15 GFLOPs Moderate (4–6 GB) Attention modules increase cost 

but model remains relatively 
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efficient. 

Mask R-CNN 
+ FPN 

ResNet-50 + Feature 
Pyramid Network ~40–60 GFLOPs High (8–12 GB) 

Region proposal networks + 
multi-scale features are compute 

intensive. 

ALIAS Hybrid Deep Learning 
System ~15–25 GFLOPs Moderate (~6 GB) 

Complexity depends on 
segmentation and detection 

branches. 

SANet Slice-Aware Network 
+ SGNL module ~25–30 GFLOPs High (7–10 GB) 

Multi-view slice processing and 
graph-based features increase 

cost. 

 
Table III      Computational Pulmonary Nodule Detection Table

Task Type Technique Validation/Test Method Nodules Types Main Method Model 
Performance 

Pulmonary 
nodule 

detection and 
diagnosis 
with CAD 

2D and 
3D CNN; SAE Performance varies 

based on dataset used 

Multiple 
appearances 
and shapes 

(size < 10mm) 

Performance 
comparison of 
CAD methods 

Accuracy, 
Sensitivity 

YOLOv4 
model for 

nodule 
detection 

2D YOLOv4 Sensitivity with FP/scan: 
81% 

Various nodule 
types YOLOv4 model Sensitivity with 

FP/scan: 81% 

Nodule 
detection 
using 16 

filters and 
Boolean logic 

3D CNN 10-fold cross-validation Nodules larger 
than 3mm 

16 filters and 
Boolean logic 

Sensitivity: 
92.75%, 8 false 

positives 

Automated 
nodule 

detection 
with 3D U-

Net 

3D CNN; 3D U-Net 10-fold cross-validation Nodules > 5mm 

Automated 
nodule 

detection with 
3D U-Net 

Internal CPM: 
94.7%, 

External CPM: 
83.3% 

Segmentation 
and 

classification 
with SVM, 

DCNN 

2D and 
3D SVM, DCNN 10-fold cross-validation Solitary, juxta-

pleural 
Segmentation, 
SVM, DCNN 

SVM: 91.4%, 
DCNN: 95% 

U-Net for 
segmentation, 

CNN for 
classification 

3D U-Net, CNN 80:20 train-test split Cancerous or 
non-cancerous 

U-Net for 
segmentation, 

CNN for 
classification 

Sensitivity: 
0.75 (before), 

0.65 (after 
classification) 

Multi-task 
dual-branch 

3D CNN with 
attention 

fusion 

3D Dual-branch 3D 
CNN 5-fold cross-validation 

Lung 
parenchyma 

and chest wall 
nodules 

Multi-task dual-
branch 3D 
CNN with 

attention fusion 

Sensitivity: 
91.33%, 0.125 
to 8 FPs/scan 

Adaptive 3D 
CNN for lung 

cancer 
detection 

3D 3D CNN 10-fold cross-validation Types, shapes, 
sizes: 3-30mm 

Adaptive 3D 
CNN 

Sensitivity: 
0.947, FP/s: 

0.14 

Hierarchical 
YOLOv5s 

2D and 
3D 

YOLOv5s, 3D 
CNN Evaluated on LUNA16 Pulmonary 

nodules 
Hierarchical 

YOLOv5s, 3D 
Sensitivity: 

97.8%, 
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Task Type Technique Validation/Test Method Nodules Types Main Method Model 
Performance 

and 3D CNN CNN confidence: 0.3 
Transformer-
based TiCNet 

for lung 
cancer 

detection 

3D Transformer, 
CNN 10-fold cross validation Benign and 

malignant 

Transformer, 
attention, multi-

scale fusion 

Sensitivity: 
93%, <11 

FP/scan, CPM: 
90.73% 

Multi-crop 
CNN with 
boundary 
refinement 

2D Multi-crop CNN 5-fold cross validation Various nodule 
types 

Multi-crop 
CNN, boundary 

refinement 

DSC: 
LUNA16: 

0.978, LIDC: 
0.982 

Self-attention 
multi-scale 

feature fusion 
network 

3D DS-MSFF-Net 10-fold cross validation Benign and 
malignant 

Self-attention 
multi-scale 

feature fusion 
network 

LIDC-IDRI: 
85.39%, 

LiTS2017 
liver: 95.79%, 

LiTS2017 
tumor: 91.75% 

Pretrained 
encoders for 
lung nodule 

segmentation 

2D UNet, FPN, 
PSPNet 5-fold cross validation Various nodule 

types 

Pretrained 
encoders: 
ResNet 

LUNA16: 
0.978, 

Sensitivity: 
97.6% 

Custom-
VGG16 

model for 
nodule 

classification 

2D Custom-VGG16 10-fold cross validation Benign and 
malignant 

Custom-
VGG16 with 
preprocessing 

LIDC: 0.982, 
Sensitivity: 

98% 

 

IV. CONCLUSION  
 
 In conclusion, this review provides a comprehensive 
synthesis of deep learning advancements in lung cancer 
detection, highlighting a broad spectrum of model 
architectures and benchmark datasets. Techniques such as 
convolutional neural networks, residual networks, attention 
mechanisms, and transformer-based models have 
significantly enhanced the performance of lung nodule 
detection, segmentation, and classification, particularly in CT 
imaging. The use of large, annotated datasets like LIDC-
IDRI, LUNA16, and DSB 2017 has further contributed to 
improvements in accuracy and consistency across various 
tasks in medical image analysis. 
Despite these advancements, several challenges persist. 
Current models often demand substantial computational  
resources and may exhibit limited generalizability across 
diverse populations. Furthermore, many deep learning 
systems are not yet fully aligned with clinical workflows, 
facing issues related to interpretability and practical 
integration in healthcare environments. Addressing these 
limitations is essential for successful real-world adoption. 
Future research should prioritize the development of 
lightweight and efficient models capable of integrating multi- 
scale features and contextual cues while maintaining high 
performance. Incorporating clinical knowledge into the 
design and evaluation of these models can enhance their 

reliability and clinical relevance. Additionally, the 
exploration of explainable AI techniques and federated 
learning frameworks may improve model transparency and 
cross-institutional adaptability. These research directions are 
expected to play a crucial role in advancing the deployment 
of deep learning models in clinical settings, ultimately 
facilitating earlier detection and more effective treatment of 
lung cancer. 

V. Findings and Recommendations 

Based on the comprehensive review of existing lung cancer 
detection techniques, the following findings and 
recommendations are presented to guide future research and 
practical implementations: 

D. Findings 
The review of existing lung cancer detection techniques has 
provided valuable insights into the strengths and limitations 
of various approaches. By analyzing the current state-of-
the-art methods, we can identify key trends and areas that 
need further development. The following findings highlight 
the most significant observations from the literature, 
particularly in the application of deep learning, the 
challenges associated with traditional machine learning 
models, and the critical importance of data preprocessing 
and evaluation metrics. These findings will guide future 
research efforts and the practical implementation of lung 
cancer detection systems in clinical settings. 
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1. Deep Learning Dominance: Convolutional Neural 
Networks (CNNs) and transfer learning have 
shown consistently high accuracy in lung cancer 
detection, especially when trained on large 
datasets. 

2. Traditional Machine Learning Limitations: 
Classical models such as SVM and KNN are still 
used but often fall short in performance compared 
to deep learning approaches, particularly in 
complex or noisy medical images. 

3. Data Imbalance and Preprocessing: Most studies 
highlight the importance of preprocessing (e.g., 
image normalization, augmentation) and address 
data imbalance using techniques like SMOTE or 
class weighting. 

4. Evaluation Metrics: Accuracy remains the most 
reported metric; however, sensitivity and 
specificity are more clinically relevant and should 
be emphasized. 

E. Recommendations 
Based on the findings from the comprehensive review, 
several key recommendations are made to guide future 
advancements in lung cancer detection techniques. These 
suggestions aim to address the current challenges, enhance 
model performance, and ensure the practical applicability 
of the methods in clinical environments. The following 
recommendations outline important steps for researchers 
and practitioners to improve the accuracy, reliability, and 
interpretability of lung cancer detection models. 

1. Use of Recent Datasets: Researchers should 
prioritize publicly available, high-resolution, and 
annotated datasets such as LUNA16, LIDC-IDRI, 
and more recent Kaggle competitions. 

2. Standardized Benchmarks: It's important to 
evaluate models on standardized benchmarks with 
consistent metrics and experimental setups for fair 
comparison. 

3. Explainable AI (XAI): Incorporating 
interpretability tools (e.g., Grad-CAM, LIME) is 
recommended to improve trust in clinical 
applications. 

4. Hybrid and Ensemble Approaches: Combining 
CNNs with attention mechanisms or ensemble 
learning has shown promise and should be further 
explored. 

5. Reproducibility and Open Access: Future studies 
should publish code, model parameters, and 
training details to enhance reproducibility and 
collaboration. 
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